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ABSTRACT

As the most critical components in a sentence, subject, predicate and object require special attention in
the video captioning task. To implement this idea, we design a novel framework, named COllaborative
three-Stream Transformers (COST), to model the three parts separately and complement each other
for better representation. Specifically, COST is formed by three branches of transformers to exploit
the visual-linguistic interactions of different granularities in spatial-temporal domain between videos
and text, detected objects and text, and actions and text. Meanwhile, we propose a cross-granularity
attention module to align the interactions modeled by the three branches of transformers, then the
three branches of transformers can support each other to exploit the most discriminative semantic
information of different granularities for accurate predictions of captions. The whole model is trained
in an end-to-end fashion. Extensive experiments conducted on three large-scale challenging datasets,
i.e., YouCookII, ActivityNet Captions and MSVD, demonstrate that the proposed method performs
favorably against the state-of-the-art methods.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Video captioning aims to generate natural language descrip-
tions of video content, which attracts much attention in re-
cent years along with the rapidly increasing amount of videos
recorded in daily life. It can be adopted for a wide range of real-
world applications, such as blind people assistance, automatic
videos summarization and classification, and intelligent video
surveillance. However, as noted in former works (Xiong et al.,
2018; Park et al., 2019; Lei et al., 2020), it is very challenging
to generate natural paragraph descriptions due to the difficul-
ties of having relevant, less redundant, and semantic coherent
sentences.

Recently, researchers attempt to use the transformer model to
solve the video captioning task (Vaswani et al., 2017; Dai et al.,
2019; Iashin and Rahtu, 2020; Zhu and Yang, 2020; Tang et al.,
2021), which relies on the self-attention mechanism to describe
the interactions between different modalities of the input data,
such as video, audio, and text. In practice, the aforementioned
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methods generally concatenate the features extracted from indi-
vidual modalities, or use self-attention to model the interactions
between extracted features. Although they advance the state-
of-the-art of video captioning, it is still far from satisfactory
in real applications due to the domain gap between different
modalities. Thus, a question naturally arises, “How to reduce
the domain gap and capture the interactions among visual and
linguistic modalities for video captioning?”

Before answering this question, let us see the basic grammar
rules at first. As pointed out in Krishna et al. (2017a) and Zhou
et al. (2018a), a sentence is generally presented as the following
form, e.g.,

Women wear Arabian skirts on a stage.

where Subject, Object, and Predicate are the three most criti-
cal elements, and indicate the objects, the actions of objects,
and the interactions among different objects, respectively. We
believe that these components correspond to visual representa-
tions with different granularities, and modeling mutil-modal in-
teractions based on them can effectively reduce the domain gap
and help model understand the content of video better. Thus
motivated, we propose a novel framework, called COllabora-
tive three-Stream Transformers (COST), for video captioning.
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Fig. 1. Comparison between prior works and the proposed COST. Previ-
ous works tended to concatenate the visual features, i.e., motion feature
(Mot Feature), appearance feature (App Feature) and region feature (Reg
Feature), as input to their video captioning model. Differently, we pro-
pose a three-branch transformer-based architecture to encode the visual-
linguistic interactions of different granularities separately and design the
cross-granularity module to complement the interactions with each other.

Different from former methods (Zhou et al., 2018b; Lei et al.,
2020; Dai et al., 2019; Wang et al., 2021) which directly con-
catenate visual features of different granularities and model the
correlation between visual and linguistic modality directly (Fig.
1(a)), COST models the visual-linguistic (Nan et al., 2021;
Fan and Yang, 2020; Seo et al., 2022; Wei et al., 2020; Luo
et al., 2020) interactions of different granularities separately in
spatial-temporal domain and then fuses the multi-modal fea-
ture in different branches for better video content understand-
ing (Fig. 1(b)). As we argue that these previous works have
overlooked the domain gap present in the features extracted
from different pre-trained models, and this oversight renders it
unreasonable to simply concatenate these features as a unified
video representation. Note that, the dashed lines in Fig. 1(a)
indicate that there exist some works extracting and combining
region features with the concatenated motion and appearance
features (Park et al., 2019) together or sending them parallel
(Zhang et al., 2020) as the visual input to their models.

Specifically, the proposed COST consists of three trans-
former branches, including the Video-Text, Detection-Text, and
Action-Text transformers. The Video-Text transformer is used
to model the interactions between the global video appearances
and linguistic texts, which makes the model perceive the gen-
eral content of the video. The Detection-Text transformer aims
at accurately locating objects in individual video frames, which
enforces the model to focus on the objects being aligned in
the visual and linguistic modalities, i.e., indicating the Subjects
and Objects in caption sentences. The Action-Text transformer
is designed to model the actions/relations of objects between
the visual and linguistic modalities, i.e., indicating the Predi-
cate in caption sentences. Meanwhile, to align the interactions
modeled by the three branches of transformers, we introduce
a cross-granularity attention model in COST. In particular, the
similarity between interactions from different branches is com-

puted to represent the relevance among visual modalities and
help inject the information from other interactions. Note that
we use the terminology ”granularity” to describe the different
levels of detail or scales at which the same input data is pro-
cessed. For example, our motion features and region features
(detection features) are both extracted from images, yet they
provide distinct information. In contrast, ”modality” is a re-
lated term that refers to the various types of inputs that a ma-
chine learning system processes, such as text, image, and au-
dio. Each modality requires specific processing techniques and
algorithms to extract valuable information and patterns effec-
tively. In addition, we introduce additional training objectives
for Detection-Text and Action-Text streams separately to align
the semantics of embeddings to the underlying video informa-
tion which is supposed to be conveyed at the time of feature
extraction, instead of only setting cross-entropy loss between
generated captions and ground-truth descriptions like most for-
mer methods. As we believe that introducing appropriate guid-
ance can ensure the uniqueness of information in each stream
and provide complementary information for each other. In this
way, different branches of transformers support each other to
exploit more discriminative semantic information in different
modalities and granularities, and enforce the model to pay more
attention on generating the accurate Subject, Object and Pred-
icate predictions. The whole model is trained in an end-to-end
fashion using Adam algorithm (Kingma and Ba, 2015).

Extensive experiments are conducted on three publicly chal-
lenging datasets, i.e., YouCookII (Zhou et al., 2018a), Ac-
tivityNet Captions (Krishna et al., 2017a) and MSVD (Chen
and Dolan, 2011), to demonstrate the superior performance of
the proposed method compared to the state-of-the-art methods
(Zhou et al., 2018b; Dai et al., 2019; Park et al., 2019; Lei
et al., 2020; Wang et al., 2021; Seo et al., 2022; Lin et al.,
2021). Specifically, our method achieves very competitive
CIDEr scores with TSN (Wang et al., 2019) features as input,
i.e., 45.54% and 24.77%, on the YouCookII val set and the Ac-
tivityNet ae-test set, surpasses or approaches the state-of-the-
arts.

The main contributions of this paper are summarized as fol-
lows:

1. We propose a novel framework, i.e., COllaborative three-
Stream Transformers (COST), that leverages multiple
transformer branches to explore various components in a
sentence for video captioning.

2. We design a simple but effective cross-granularity atten-
tion module to align the interactions modeled by differ-
ent transformer branches, which supports each other to ex-
ploit discriminative semantic cue from different granulari-
ties for more accurate predictions of captions.

3. We specially introduce a new training objective for COST
that constrains the semantics of embeddings in Detection-
Text branch and Action-Text branch to supply for caption
generation, further enhancing performance.

4. Extensive experiments conducted on three challenging
datasets show that our method performs favorably against
the state-of-the-art methods.
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2. Related Work

Video Captioning. Over the past few years, video caption-
ing has received increasing attention from both computer vision
and natural language processing community (Xu et al., 2021),
which aims to generate linguistic description for the video con-
tent. Early works mainly focus on template-based approaches.
For example, Guadarrama et al. (2013) and Das et al. (2013)
first detect the visual objects in a video with human-crafted
features and then use them to fill the pre-defined templates
with slots. However, such methods are restricted in generat-
ing semantically-rich sentences due to the high dependence on
fixed templates and language rules.

Motivated by the success of neural network in translation
task (Sutskever et al., 2014), the methods of taking caption-
ing task as translation task became popular (Venugopalan et al.,
2015b; Yu et al., 2016; Pan et al., 2017; Zhang et al., 2018). The
nature of these methods is performing sequence-to-sequence
learning in an encoder-decoder paradigm (Chen et al., 2019),
where the convolutional neural networks (CNNs) (Zheng et al.,
2020) and Long-Short Term Memory (LSTM) networks (Pei
et al., 2019; Park et al., 2019) are generally adopted to extract
discriminative feature embeddings from input video and gen-
erate accurate captions separately. To alleviate the heavy com-
putational burden of applying 2D-CNN, especially 3D-CNN to
dense frame inputs for visual feature extraction, the methods
in this paradigm mostly operate on the pre-extracted features
and the subsequent works mainly concentrate on the improve-
ments in feature extraction or utilization, including 1) multi-
modal feature extraction (Wang et al., 2018; Hao et al., 2018;
Hori et al., 2018; Xu et al., 2019; Zhang et al., 2020) and 2)
feature utilization optimization (Venugopalan et al., 2015b,a;
Yao et al., 2015; Li et al., 2017; Gao et al., 2020; Chen and
Jiang, 2019). In the former one, HACA (Wang et al., 2018)
proposes a hierarchically LSTM-based network to learn and
align the attentive representations of both visual and audio fea-
tures at different granularities. DS-RNN (Xu et al., 2019) pro-
poses a dual-stream framework to model visual and semantic
features independently and decode the hidden states from both
modalities jointly. ORG-TRL (Zhang et al., 2020) not only
proposes an object relational graph to connect each object in
video and do relational reasoning by graph convolutional net-
work, but also designs a teacher-recommended learning method
to utilize the external language model to improve the genera-
tion of caption model by integrating the linguistic knowledge.
In the later one, LSTM-YT (Venugopalan et al., 2015b) pro-
poses that mean pooling features across all frames is a ratio-
nal representation for generating simple descriptions to short
video clips. However, it totally ignores the order of frames in
original video and discards the temporal information which is
crucial for video captioning. S2VT (Venugopalan et al., 2015a)
firstly introduces sequence-to-sequence model to video caption-
ing task and processes frames and generates words sequentially
while preserving the temporal structure. In order to make the
model concentrate on relevant features for specific word gener-
ation, temporal attention (Yao et al., 2015) is proposed to assign
higher weights to relevant features. Apart from the frame-level
attention, MAM-RNN (Li et al., 2017) proposes that different

regions in the video frame contribute differently to the word
prediction, and designs a two-layers structure with the first layer
focusing on the most salient regions in each frame and the sec-
ond one attending to the most correlated frames.

Recently, inspired by the superior performance in learning
long-range relations through the attention mechanism com-
pared with RNNs(e.g., LSTM and GRU (Chung et al., 2014)),
Transformer-based models have emerged in this field. Zhou
et al. (2018b) proposes an end-to-end trained transformer
model, where the encoder is designed to extract semantic rep-
resentations from the video, and the proposal decoder receives
the encoding output with different anchors to form video event
proposals. Sun et al. (2019) designs the VideoBERT model to
learn bidirectional joint distributions over sequences of visual
and linguistic tokens. Lei et al. (2020) develops the memory-
augmented recurrent transformer, which uses a highly summa-
rized memory state from the video clips and the sentence his-
tory to facilitate better prediction of the next sentence. More re-
cently, by employing the tubelet embedding scheme and factor-
ized encoder architecture from ViViT (Arnab et al., 2021) and
elaborately designed bi-directional objective, MV-GPT (Seo
et al., 2022) can be applied to raw pixels instead pre-extracted
visual features and generates captions directly. SwinBERT (Lin
et al., 2021) is also an end-to-end transformer-based video cap-
tioning model with video frame patches as input, which uses
VidSwin (Liu et al., 2021b) as visual encoder to extract video
tokens and promotes cross-modality representation by applying
masked text token prediction. They provide new insights for
the future development of this field.

Multi-modal cross-attention mechanism. The interactions
between different modalities are critical for the video caption-
ing task. Recent transformer based methods (Iashin and Rahtu,
2020; Zhu and Yang, 2020; Tang et al., 2021) use the cross-
attention module to learn correlations across different modal-
ities. For example, Iashin and Rahtu (2020) concatenates the
learned embeddings from multiple modalities, e.g., video, au-
dio and speech, for event description. Tang et al. (2021) uses
frame-level dense captions as an auxiliary text input for better
video and language associations, where the constrained atten-
tion loss is used to force the model to automatically focus on the
best matched caption from a pool of misalignment caption can-
didates. Recently, Li et al. (2022) proposed a novel approach to
strengthen image and text embeddings through the incorpora-
tion of action information through cross-attention manner, and
achieves state-of-art performance on image-text retrieval task.

Despite sharing some similarities with these approaches in
using self-attention to align visual-linguistic interactions, our
approach is significantly different. In specific, we design the
cross-granularity attention module integrated in the collabora-
tive three-stream transformers to align three types of visual-
linguistic interactions of different granularities, as we believe
that they could support and complement each other, for exam-
ple, the model could more easily understand the current mo-
tion scene after injecting the information from detection feature
of ”basketball” and action feature of ”play” to video feature,
leading to more discriminative semantic cues for better caption
generation.
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Multi-branch architectures. The idea of multi-branch has
been widely applied in various tasks (Liu et al., 2021a; Zhu
and Yang, 2020; Kim et al., 2020). SibNet (Liu et al., 2021a)
proposes a two-branch architecture to encode the content and
semantic of videos separately and then the both branches are
combined and fed to decoder for video caption generation. Act-
Bert (Zhu and Yang, 2020) proposes the tangled transformer
block to encode three sources of information, i.e., global ac-
tions, local regional objects, and linguistic descriptions to learn
better video-text representation. MTTSNet (Kim et al., 2020)
defines three region features corresponding to part-of-speech
(POS) relation and designs a triple-stream network to encode
these features separately and merges the processed embeddings
to generate caption and predicts POS of each word for image
caption task.

Our COST also adopts the multi-branch architecture, but it
is different than the above methods from two aspects. First, the
design motivations are different. We use three-branch archi-
tecture to encode the visual-linguistic interaction of different
granularities to disentangle the complex video information by
self-attention, and use the cross-granularity attention module to
complement and enhance the embeddings extracted from differ-
ent branches, so as to improve the video analysis ability of the
model to generate accurate description. Second, the contribu-
tions of branch to task are different. For example, ActBert and
MTTSNet only set optimization objective for the whole model
instead of each branch, and SibNet designs specific loss for two
branches but only to improve the ability of the model to extract
feature from the video. Differing from them, we set training ob-
jective for each branch to align the semantics of pre-extracted
visual features to correspond to POS, and the embeddings in
each branch are semantically complementary and directly par-
ticipate in caption generation after information fusion.
Multi-modal pre-training models. Large-scale pre-training
is another effective way to improve the accuracy of caption-
ing models. Specifically, the jointly trained video and language
models (Sun et al., 2019; Zhu and Yang, 2020; Huang et al.,
2020; Luo et al., 2020; Ging et al., 2020; Seo et al., 2022) on the
large-scale datasets, such as YouTube-8M (Abu-El-Haija et al.,
2016) and HowTo100M (Miech et al., 2019) with automatic
speech recognition1 transcripts, provide discriminative features
for downstream tasks, such as video captioning, action local-
ization and et al.. VideoBert (Sun et al., 2019) and ActBert
(Zhu and Yang, 2020) collect large paired video sequences and
text descriptions with the help of off-the-shelf automatic speech
recognition (ASR) model, and construct the BERT-style objec-
tive to train the video and text encoders simultaneously. Huang
et al. (2020) constructs a dense video captioning dataset, i.e.,
Video Timeline Tags (ViTT), and explores several multi-modal
sequence-to-sequence pre-raining strategies using transformers
(Vaswani et al., 2017). Luo et al. (2020) also applies trans-
formers with two single-modal encoders to encode the video
and text separately, a cross encoder to model the interactions
between video and text representations, and a decoder to recon-
struct or generate text. Ging et al. (2020) develops the Coop-

1https://developers.google.com/youtube/v3/docs/captions

erative hierarchical Transformer (COOT) to model the interac-
tions between different levels of granularities and modalities,
which achieves superior results on video-text retrieval task and
provides learned representations to improve the performance of
video captioning model (Lei et al., 2020) significantly. Re-
cently, Seo et al. (2022) proposes that recent visual-language
pre-training frameworks lack the ability to generate sentences
and presents MV-GPT with novel bidirectional objective for
generation task.

3. Our Approach

As discussed above, we design the collaborative three-stream
transformers to model the interactions of objects, and ac-
tions/relations of objects between different modalities, which
is formed by three branches of transformers, i.e., Video-Text,
Detection-Text, and Action-Text transformers. Specifically, the
video and text inputs are firstly encoded to extract the multi-
modal feature embeddings. After that, the embeddings are fed
into the three-stream transformers to exploit the interactions be-
tween linguistic embedding and visual embeddings of different
granularities in spatial-temporal domain, i.e., global videos, ob-
ject regions, and actions. Meanwhile, the cross-granularity at-
tention module is designed to align the interactions modeled by
the three branches of transformers. The overall architecture of
the proposed method is shown in Fig. 2.

3.1. Multi-Modality Tokens

Three kinds of tokens, i.e., visual tokens, linguistic tokens,
and special tokens, are used to express the video and text inputs,
which are described as follows.
Visual tokens. For the visual tokens, we use three kinds of to-
kens for different granularities in spatial-temporal domain, that
is the video tokens, the detection tokens, and the action tokens.

• Video tokens provide the global semantic information in
the video sequence. In contrast to Lei et al. (2020),
we only use the appearance features extracted by Tem-
poral Segment Networks (TSN) (Wang et al., 2016) (de-
noted as TSN-APP in Fig. 2) as the video tokens, i.e.,
{ f v

1 , f v
2 , · · · , f v

Nv
}, where f v

i is the extracted feature of the i-
th video clip, and Nv is the number of video clips. Notably,
we can also leverage more powerful multi-modal feature
extraction method COOT (Ging et al., 2020) to improve
the performance, which is pre-trained on the large-scale
HowTo100M dataset (Miech et al., 2019).

• Detection tokens are used to enforce the model to focus on
the Subjects or Objects in caption sentences. Similar to
Park et al. (2019); Lu et al. (2019); Zhu and Yang (2020),
we use the Faster R-CNN method with 101-layer residual
net (ResNet-101) (He et al., 2016) as backbone to detect
the objects in each frame, which is pre-trained on the Vi-
sual Genome dataset (Krishna et al., 2017b). After that,
the detection features in Faster R-CNN corresponding to
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Fig. 2. The network architecture of the proposed COST method, which is formed by three branches of transformers, i.e., the Action-Text, Video-Text
and Detection-Text transformers. The cross-granularity attention module is designed to align the interactions modeled by the three different branches of
transformers, and Y, H and X represent the interactions of these branches separately.

the objects with the highest confidence scores in K cate-
gories2 are used to generate the detection tokens for each
frame. We use { f d

1 , f d
2 , · · · , f d

Nd
} to denote the set of detec-

tion tokens, where f d
i is the i-th detection feature, and Nd

is the total number of detections in the video sequence.

• Action tokens are designed to enforce the model to concen-
trate on the Predicates in caption sentences. Following Lei
et al. (2020), the optical flow features of video sequences
are extracted by TSN (Wang et al., 2016) (denoted as TSN-
MOT is Fig. 2) to generate the action tokens, which are
used to describe the actions/relations of objects. The ac-
tion tokens are denoted as { f a

1 , f a
2 , · · · , f a

Na
}, where f a

i is
the motion feature of the i-th video clip, and Na is the total
number of action tokens. It is noted that the Nv is always
equal to Na in our method based on the pre-trained model

2If the category number of the detected objects is less than K in a frame, we
select the K detected objects with the highest confidence scores regardless the
object categories to generate the detection tokens.

we use for extracting appearance features and motion fea-
tures.

Linguistic tokens. We break down the captions of video se-
quences into individual words and compute the correspond-
ing linguistic tokens using the GloVe model (Pennington et al.,
2014). The linguistic tokens are denoted as { f t

1, f t
2, · · · , f t

Nt
},

where f t
i is the extracted features of the i-th word using the

GloVe model, and Nt is the total number of words. In light of
the emergence of more powerful language representation mod-
els, such as BERT (Devlin et al., 2019) and CLIP (Radford
et al., 2021), GloVe appears outdated as a model for vector rep-
resentations for text. Nonetheless, we utilize GloVe features
to represent captions for the sake of comparison fairness, as
the main methods under comparison, such as MART Lei et al.
(2020) and PDVC Wang et al. (2021), rely on GloVe as their
text encoding model. Additionally, setting feature vectors to
special characters by first random initialization with the same
shape as features provided by GloVe, such as ”[EOS]”, and the
semantics of these characters can to be learned during the train-
ing process, rendering GloVe a suitable choice for the current
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task.
Special tokens. Besides the aforementioned tokens, we also in-
troduce three kinds of special tokens in transformer, similar to
BERT (Devlin et al., 2019). The first one is the granularity to-
ken [CLS], which is added at the beginning of visual features to
denote which granularity the following tokens belong to. The
second one is the three kinds of separation token, i.e., [SEP],
[BOS], and [EOS]. [SEP] is used at the end of the visual to-
kens to separate them from the linguistic tokens, [BOS] is used
to denote the beginning of linguistic tokens, and [EOS] is used
to denote the ending of the linguistic tokens, respectively. And
the last one is the padding token [PAD] with two purposes: sup-
plementing the visual token sequence or text token sequence to
specified length for training or inference in parallel; substitut-
ing for all linguistic tokens in inference phase so no caption
information will be leaked to the model. In addition, we use
a fully-connected layer to encode the aforementioned tokens to
the same dimension. Thus, the inputs for the three-stream trans-
former are computed as{

[CLS(·)], f (·)
1 , f (·)

2 , · · · , f (·)
N(·)
, [SEP], [PAD]×N1 ,

[BOS], f t
1, · · · , f t

Nt
, [EOS], [PAD]×N2

} (1)

where (·) ∈ {v, d, a} indicates the video, detection, and action
tokens, respectively. And the subscript of [PAD] means the
number of it to supplement. Please note that the purpose of
concatenating visual and linguistic tokens is not to directly fuse
their information. Rather, the interaction between the features
of two modalities will be encoded through a subsequent masked
multi-head attention module. Thus, we choose concatenation as
it helps to preserve the information of both modalities. We also
use the positional encoding strategy (Vaswani et al., 2017) in
the Video-Text, Detection-Text, and Action-Text transformers
to describe the order information of caption sentences.

3.2. Three-Stream Transformers

As shown in Fig. 2, we feed the aforementioned tokens into
the three-stream transformers. The Video-Text, Detection-Text,
and Action-Text branches are formed by S basic blocks, and
each block mainly consists of a self-attention module and a
cross-granularity attention module. Both the self-attention and
cross-granularity modules are followed by a feed forward layer.
Self-attention module. The self-attention module is designed
to model the visual-linguistic alignments in each branch of
transformers, i.e., Video-Text, Detection-Text, and Action-Text.
Following Vaswani et al. (2017), we compute the attention
function between different tokens as follows.

A(Q ,K ,V) = softmax
(QK T

√
d

)
V (2)

where Q , K and V are created by inputting tokens into three
different fully-connected layers in each branch. And their di-
mensions are RN×d, where N and d are the number of tokens
and the dimension of embeddings, respectively. We advocate
h paralleled heads of scaled dot-product attentions to increase
the diversity. It is noted that we also add mask to the scaled
dot-product before applying Softmax to prevent the model from
seeing future words (Vaswani et al., 2017). We denote the
whole module as Masked Multi-Head Self-Attention in Fig. 2

Q QKV K V

M-MHA

H Y XY X H

QKV

Concat

M-MHAM-MHA

(a) Concatenated (b) Parallel

Fig. 3. Two cross-granularity attention architectures to merge embed-
dings from different branches. M-MHA denotes the Masked Multi-Head
Attention. X, Y and H indicate the hidden states from Detection-Text
branch, Action-Text branch and Video-Text branch separately and both
sub-figures demonstrate the process of information fusion from the other
two branches to Action-Text branch.

and the output is merged with input using a residual connection
and layer norm.
Cross-granularity attention module. Besides the self-
attention module, we use the cross-granularity attention module
to align the interactions modeled by the three branches of trans-
formers. Specifically, we complement and enhance the embed-
dings in each branch by injecting the information from other
branches based on cross-attention between them. The branch
that is incorporated into information and the other two branches
are dubbed as injected branch and supply branches for better
understanding the following description. We propose two ar-
chitectures as shown in Fig. 3 and compare their performance
by experiments. It is important to note that we only illustrate
the implementation of the cross-granularity attention module
within the Action-Text branch in Fig 3. Specifically, embed-
dings from this branch are utilized as the query to fuse informa-
tion from the other two branches, while the embeddings from
the other two branches similarly serve as queries within their
respective cross-granularity attention modules.
Concatenated Architecture A simple and straightforward way
to inject the related information from supply branches is to con-
catenate the embeddings from them and use the obtained result
as key and value while regarding the embeddings from injected
branch as query in the multi-head attention layer. The whole
process in Action-Text branch is shown in Fig. 3(a) and the
other two branches perform the same computation with their
own embeddings as query. The computation process is

MY = softmax
(
Y ⊙
([

H; X
]T)) (3)

Y′ = FFN
(
MY ⊙

([
H; X
]))

(4)

where ⊙ represents the dot product,
[
·; ·
]

denotes the con-
catenation operation, FFN is the feed forward layer, X,Y and H
denote the hidden states from Detection-Text branch, Action-
Text branch and Video-Text branch separately. We estimate the
modality-wise normalization score of the interactions using a
softmax layer. It should be noted that we add the mask here
to prevent possible linguistic information leakage to the model.
The affinity matrix MY ∈ R(Na+Nt)×(Nv+Nd+2Nt) and MY(i, j) de-
notes the normalized interaction score between the i-th entity
in the Action-Text embeddings and the j-th entity in the con-
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catenated Video-Text and Detection-Text embeddings. Based
on the matrix, the feature embeddings of the Action-Text trans-
former can extract information from other branches. Feed for-
ward layer is used to further encode the extracted information
which will be merged to Action-Text transformer.

Parallel Architecture As shown in 3 (b), the other architec-
ture design of cross-granularity attention is to feed embedding
from one of supply branches and that from the injected branch
to multi-head attention layer parallel, and then fuse the result
from the two attention layers. The computation process is

MYH = softmax(Y ⊙ HT) MYX = softmax(Y ⊙ XT) (5)
Y′ = FFN(MYH ⊙ H +MYX ⊙ X) (6)

Then Y′ will be merged with Y using the residual connec-
tion and layer norm. Notably, we evaluate our model equipped
with different cross-granularity architecture and analyse the re-
sult in Ablation Studies. The results show that the our model
with the parallel cross-granularity structure performs better, and
we keep this structure in all comparisons with other methods.
We apply the cross-granularity attention in all blocks for each
branch of transformers. In this way, the visual entities of dif-
ferent granularities can enhance each other with more discrim-
inative semantics for video captioning. It is noteworthy that
we can leverage the video-text features in history to obtain the
long-term sentence-level recurrence to generate the next sen-
tences according to Lei et al. (2020), which can further enhance
the performance of our model.

3.3. Optimization Objective
As we stated before, we introduce specified loss to each

stream to guide the training of our COST method. This ap-
proach helps in preserving the semantics of visual features at
different granularities and facilitate their complementary na-
ture. The loss is formed by three terms, i.e., Lv(·, ·) for the
Video-Text transformer, Ld(·, ·) for the Detection-Text trans-
former, and La(·, ·) for the Action-Text transformer, i.e.,

L =Lv(ℓv, [{ f t
1, · · · , f t

Nt
, [PAD]×N2 }])

+ λd · Ld(ℓd, [{ f d
1 , f d

2 , · · · , f d
Nd
}])

+ λa · La(ℓa, [CLSa])

(7)

where λd and λa are the pre-set parameters used to balance these
three terms. Lv(·, ·) is the cross-entropy loss used to penal-
ize the errors of the predicted captions by the linguistic tokens
from Video-Text branch comparing to the ground-truth descrip-
tions ℓv, which are the indexes of words in caption sentences.
Ld(·, ·) is also the cross-entropy loss used to penalize the er-
rors of the predicted categories of objects by the visual tokens
from Detection-Text branch comparing to the pseudo category
labels generated by the Faster R-CNN detector3. La(·, ·) is de-
signed as the multi-label classification loss because there may

3Notably, we do not use the annotated objects for model training, but use the
pseudo category label ℓd generated by the Faster R-CNN detector as the ground-
truth label to enforce the network to maintain the original encoded semantic
information of detector. The reason is that the ground-truth of video captioning
does not explicitly provide the categories of items in the scene and there is a
one-to-one correspondence between pseudo categories and extracted features.

be multiple actions in a video clip. Specifically, we first aggre-
gate all action tokens as the granularity token [CLSa] and then
compute the confidence score using a fully-connected layer,
i.e., FC([CLSa]). Following Zhang et al. (2021) and Sun et al.
(2020), the loss function is computed as

La(ℓa, [CLSa]) = log
(
1 +

∑
i∈Ωpos(ℓa)

e−si
)
+ log

(
1 +

∑
j∈Ωneg(ℓa)

es j
)

(8)

which expects the confidence scores si of the existing actions
Ωpos(ℓa) in video sequences are greater than the predefined
threshold 0 while the confidence scores s j of non-existing ac-
tions Ωneg(ℓa) are less than 0. The ground-truth action labels
are the most common verbs in caption sentences, which are re-
trieved by the off-the-shelf part-of-speech tagger method (Sun
et al., 2019).

4. Experiments

4.1. Datasets And Evaluation Metrics

Datasets. We conduct several experiments on two challenging
datasets, i.e., YouCookII (Zhou et al., 2018a) and ActivityNet
Captions (Krishna et al., 2017a).

1) YouCookII includes 2, 000 long untrimmed videos de-
scribing 89 cooking recipes, where each video contains one ref-
erence paragraph and is further split into several event segments
with annotated sentences. 1, 333 and 457 video sequences are
used for training and validation, respectively.

2) ActivityNet Captions is a large-scale dataset formed by
10, 009 videos for training and 4, 917 videos for validation and
testing. Notably, since the testing set is not publicly available,
following Zhou et al. (2019), the original validation set is split
into the ae-val subset with 2, 460 videos for validation and the
ae-test subset with 2, 457 videos for testing.

3) MSVD consists of 1970 video clips collected from
YouTube and each clip is spanning over 10 to 25 seconds, with
40 sentences as annotations. Following Chen and Jiang (2021);
Ye et al. (2022), we split the dataset into 1, 200, 100, and 670
video clips for training, validation and testing, respectively.
Data Preprocessing. For fair comparisons, we try to keep con-
sistent with the previous works. For YouCookII and Activi-
tyNet Captions datasets, we use the features extracted provided
by Zhou et al. (2018b) as video features and motion features
to represent videos. Specifically, firstly the video is down-
sampled to extract frame every 0.5s, then the video feature is
extracted from the ’Flatten-673’ layer in ResNet-200 (He et al.,
2016) with the dimension of 2048 and motion feature is ex-
tracted from the ’global pool’ layer in BN-Inception (Ioffe and
Szegedy, 2015) with the dimension of 1024. Both networks
are pre-trained on ActivityNet dataset (Heilbron et al., 2015)
for the action recognition task. Following previous works (Ye
et al., 2022; Zhang et al., 2020), we utilize InceptionResNetV2
(Szegedy et al., 2017) and C3D (Tran et al., 2015) to extract
1536-dim video features and 2048-dim motion features, respec-
tively. The two models are pretrained on ImageNet dataset
(Russakovsky et al., 2015) and Sports 1M dataset Karpathy
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et al. (2014) separately. And we use 16-frame clips with 8-
frame overlap as input to C3D. For all the three datasets, we uni-
formly use Faster R-CNN (Ren et al., 2017) with ResNet-101
as the backbone to extract the object representation as detection
features with the dimension of 2048. Considering the trade-
off between accuracy and complexity, we give preference to 5
detection features with highest confidence and different classes
per frame. As we predefine that at most 100 frames are sam-
pled from one video clips, i.e., Nv = Na = 102,Nd = 502 with
the two special tokens [CLS] and [SEP]. Meanwhile, we exploit
the first 20 words in the caption sentences and compute the 300-
dim GloVe features, i.e., Nt = 22 with the two special tokens
[BOS] and [EOS]. It is worth noting that, we selected 20 as
the truncation number firstly to be consistent with the previous
method. Concurrently, we also conducted a statistical analysis
on the distribution of caption lengths across the three datasets.
The results indicate that over 90% of captions fall within this
range, and even more than 97% of YouCookII satisfies this cri-
terion. Therefore, this choice is a reasonable decision. For the
COOT features, we concatenate the local clip-level (384-dim)
and the global video-level (768-dim) features to describe the
videos. After the fully-connected layer, all the tokens are con-
verted into the 768-dim features.
Evaluation metrics. Similar to former works (Park et al.,
2019; Lei et al., 2020; Zhu and Yang, 2020), we use several
standard metrics to evaluate our method, including BLEU@n
(B@n) (Papineni et al., 2002) for n-gram precision, METEOR
(M) (Denkowski and Lavie, 2014) for n-gram with synonym
matching, CIDEr-D (C) (Vedantam et al., 2015) for consen-
sus measurement, Rouge(R) (Lin, 2004) for longest subse-
quence similarities and Repetition@4 (R@4) (Xiong et al.,
2018; Park et al., 2019) for n repetition in the description. No-
tably, two evaluation modes are considered, i.e., micro-level
and paragraph-level. The micro-level evaluation reports the
average score on all video sequences separately; while the
paragraph-level evaluation first concatenates the caption sen-
tences of all video sequences and then computes the scores av-
eraged across all videos based on the ground-truth paragraph
caption sentences, which aims to preserve the story flow with
coherence and conciseness. Following existing works (Xiong
et al., 2018; Lei et al., 2020), we apply the paragraph-level eval-
uation to YouCookII and ActivityNet Captions datasets as they
annotates multiple clips in each videos. In both modes, CIDEr
is used as the primary metric for ranking.

4.2. Implementation Details

Our COST algorithm is implemented using PyTorch. All
the experiments are conducted on a machine with 2 NVIDIA
RTX-3090 GPUs. We train the model using the strategies sim-
ilar to BERT (Devlin et al., 2019). Specifically, we use Adam
(Kingma and Ba, 2015) with an initial learning rate of 1e − 4,
β1=0.9, β2=0.999, L2 weight decay of 0.01, and the learning
rate warmup over the first 2 epochs. We train the model at most
20 epochs with early-stop strategy based on CIDEr-D and the
batch size is set to 64. For each branch of transformers, we set
the dimension of the feature embeddings d = 768, the number
of transformer blocks S = 2, and the number of attention heads

h = 12. The loss weights λa and λd in equation 7 are set to 2.0
and 0.02 which are verified by multiple experiments. It is noted
that text tokens are all initialized as [PAD] at the time of evalu-
ation and the description is generated word by word: one word
token is generated at a time and substitutes for [PAD] in the cor-
responding position, and then sent to the model with previously
generated tokens to predict the next one until [EOS] token is
generated or the length of sentence reaches the maximum.

4.3. Evaluation Results

We compare the proposed COST method with the state-
of-the-art methods on the three challenging datasets, i.e.,
YouCookII, ActivityNet Captions and MSVD. As shown in Ta-
ble 1, our method obtains the competitive results on both the
YouCookII val subset and the ActivityNet Captions ae-test sub-
set. Without using the COOT features, our method approaches
the state-of-art work, i.e., VLTinT (Yamazaki et al., 2022) on
the YouCookII val subset. Beside using 3D-CNN network and
a human detector to extract global and local visual features,
VLTinT utilizes Language-Image Pre-training (CLIP) (Radford
et al., 2021) to obtain additional linguistic features. And com-
pare our work with other works which don’t introduce addi-
tional linguistic features, it can be observed that our method
improves near 10% CIDEr score compared to the second best
method, i.e., MART (Lei et al., 2020). This is attributed to the
fact that we use the multi-branch structure to process visual in-
formation at different granularities and make them complemen-
tary to each other through the proposed cross-granularity atten-
tion module, which make it easier for the model to understand
the video content. Besides, our method exploits the local ap-
pearance information from the Detection-Text transformer for
more accuracy caption generation. We also give experiment re-
sults in ablation part to verify their effects respectively. Using
the COOT features, the overall video captioning results are sig-
nificantly improved, which demonstrates that the video features
extracted by different pre-trained models have a great impact
on the performance of the captioning model, and our COST
method also performs favorably against other algorithms by im-
proving over 3% CIDEr score. We observe that the similar trend
appears in the ActivityNet Captions ae-test subset. It is worth
noting that PDVC (Wang et al., 2021) performs better on Activ-
ityNet but relatively poorly on YouCookII, probably due to the
different characteristics of the two datasets: each video of Ac-
tivityNet lasts 120s with 3.65 temporally-localized sentences
on average while the duration of each video in YouCookII is
320s with 7.7 annotated segments and associated sentences.
However, COST has a balanced and satisfactory performance
on both datasets, which further proves the effectiveness of our
method. As presented in Table 2, we also compare the proposed
method to some LSTM based methods with input detection fea-
tures on the ActivityNet Captions ae-val subset. Note that Table
1 and 2 don’t list same number of compared methods is because
these LSTM-based methods had only evaluated on the ae-val
subset of Activity Captions and provided the corresponding re-
sults. Compared to AdvInf (Park et al., 2019), which also in-
puts multi-modal features (concatenation of image recognition,
action recognition and object detection features) and designs
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Table 1. Experimental Results on the YouCookII Val Subset and ActivityNet Captions Ae-Test Subset in the Paragraph-Level Evaluation
mode. COOT Indicates That the Evaluated Methods Use the Feature Extracted by COOT (Ging et al., 2020) Pre-Trained on HowTo100M
(Miech et al., 2019). * indicates that VLTinT utilizes extra linguistic features obtained through CLIP (Radford et al., 2021). We Report
BLEU@4 (B@4), METEOR (M), CIDEr-D (C) and Repetition@4 (R@4).

Method COOT
YouCookII (val) ActivityNet Captions (ae-test)

B@4 M C R@4 ↓ B@4 M C R@4 ↓
Vanilla Transformer (Zhou et al., 2018b) ✗ 7.62 15.65 32.26 7.83 9.31 15.54 21.33 7.45
Transformer-XL (Dai et al., 2019) ✗ 6.56 14.76 26.35 6.30 10.25 14.91 21.71 8.79
Transformer-XLRG (Lei et al., 2020) ✗ 6.63 14.74 25.93 6.03 10.07 14.58 20.34 9.37
MART (Lei et al., 2020) ✗ 8.00 15.90 35.74 4.39 9.78 15.57 22.16 5.44
PDVC (Wang et al., 2021) ✗ 7.11 15.05 26.03 7.65 11.36 15.73 25.03 10.92
VLTinT* (Yamazaki et al., 2022) ✓ 9.40 17.94 48.70 4.29 14.50 17.97 31.13 4.75
COST ✗ 9.47 17.67 45.54 4.04 11.14 15.91 24.77 5.86
Vanilla Transformer (Zhou et al., 2018b) ✓ 11.05 19.79 55.57 5.69 10.47 15.76 25.90 19.14
Transformer-XL (Dai et al., 2019) ✓ - - - - 10.57 14.76 22.04 15.85
MART (Lei et al., 2020) ✓ 11.30 19.85 57.24 6.69 10.85 15.99 28.19 6.64
SART (Man et al., 2022) ✓ 11.43 19.91 57.66 8.58 11.35 16.21 28.35 7.18
COST ✓ 11.56 19.67 60.78 6.63 11.88 15.70 29.64 6.11

Table 2. Comparison With the State-of-the-Art Methods on Activ-
ityNet Captions Ae-Val Subset in the Paragraph-Level Evaluation
Mode. Det. And Re. Indicate Whether the Model Uses Detec-
tion Features And the Sentence-Level Recurrence. * indicates that
VLTinT utilizes extra linguistic features obtained through CLIP
(Radford et al., 2021).

Det. Re. B@4 M C R@4 ↓
LSTM based methods:
MFT (Xiong et al., 2018) ✗ ✓ 10.29 14.73 19.12 17.71
HSE (Zhang et al., 2018) ✗ ✓ 9.84 13.78 18.78 13.22
LSTM based methods with detection feature:
GVD (Zhou et al., 2019) ✓ ✗ 11.04 15.71 21.95 8.76
GVDsup (Zhou et al., 2019) ✓ ✗ 11.30 16.41 22.94 7.04
AdvInf (Park et al., 2019) ✓ ✓ 10.04 16.60 20.97 5.76
Transformer based methods:
Vanilla Transformer (Zhou et al., 2018b) ✗ ✗ 9.75 15.64 22.16 7.79
Transformer-XL (Dai et al., 2019) ✗ ✓ 10.39 15.09 21.67 8.54
Transformer-XLRG (Lei et al., 2020) ✗ ✓ 10.17 14.77 20.40 8.85
MART (Lei et al., 2020) ✗ ✓ 10.33 15.68 23.42 5.18
PDVC (Wang et al., 2021) ✗ ✗ 11.80 15.93 27.27 10.68
SART (Man et al., 2022) ✗ ✓ 11.35 16.21 28.35 7.18
VLTinT* (Yamazaki et al., 2022) ✗ ✗ 14.93 18.16 33.07 4.87
COST ✓ ✓ 11.22 16.58 25.70 7.09

three discriminators to enhance the fluency and relevance in the
generated captions, our method produces higher scores for both
B@4 and CIDEr, demonstrating the superiority of the collab-
orative transformers to learn multi-modal representations over
LSTM. Meanwhile, MART (Lei et al., 2020) without input de-
tections performs inferior than our method in terms of B@4, M
and C metrics, even though it utilizes complex memory module
to store video-text features in history to generate more coherent
and accurate captions. It indicates that detection features are
important entity for video captioning task which is neglected
by recent transform-based approaches, and aligning the inter-
actions between these visual features of different granularities
can contribute greatly to generating accurate captions. PDVC
(Wang et al., 2021) adds multiple temporal convolutional layers
to obtain feature sequences across multiple resolutions as input
and performs better than our method in terms of B@4 and C
metrics, but the sentences generated by it have significant re-
dundancy (with high R@4 metric) due to complex input. It is
worth noting that both SART (Man et al., 2022) and VLTinT

Table 3. Comparison With State-of-the-Art Methods on YouCookII
Val Subset in the Micro-Level Evaluation Mode. * indicates the
evaluated method had been pre-trained on large-scale datasets and
† indicates the evaluate method using multi-modal features ex-
tracted by COOT (Ging et al., 2020).

Method B@3 B@4 M R C
Masked Trans. (Zhou et al., 2018b) 7.53 3.84 11.55 27.44 0.38

S3D (Xie et al., 2017) 6.12 3.24 9.52 26.09 0.31
VideoBERT* (Sun et al., 2019) 6.80 4.04 11.01 27.50 0.49

VideoBERT+S3D* (Sun et al., 2019) 7.59 4.33 11.94 28.80 0.50
ActBERT* (Zhu and Yang, 2020) 8.66 5.41 14.30 30.56 0.65

SwinBERT* (Lin et al., 2021) 13.80 9.00 15.60 37.30 1.09
COST 10.69 6.63 12.61 31.09 0.71
COST† 13.50 8.65 15.62 36.53 1.05

(Yamazaki et al., 2022) both performs well on this subset while
based on different solutions: the former one proposes a scenario
understanding module to enhance the corresponding ability of
their model while the latter captures coherent semantics by in-
troducing more powerful linguistic features, which provides in-
sights for future exploration in this dataset.

According to Table 3, our method outperforms several BERT
based methods which pre-trained on large-scale datasets in
terms of the micro-level evaluation. In particular, ActBERT
(Zhu and Yang, 2020) pre-trains on HowTo100M (Miech et al.,
2019) firstly and then relies on better visual modalities than our
method (for example, its extraction network for action feature
pre-trained on Kinetics dataset (Kay et al., 2017)). However, it
directly focuses on the learning the alignment between text and
other visual modalities, which is difficult to exploit the discrim-
inative semantic information. In contrast, our cross-granularity
attention module learns from three visual-linguistic interactions
of different granularities using the three-stream transformers,
producing better CIDEr score. SwinBERT (Lin et al., 2021)
is proposed as a pure Transformer-based end-to-end architec-
ture for video captioning, which leverages VidSwin (Liu et al.,
2021b) pre-trained on Kinetics-600 to extract spatial-temporal
video representations and then proposes Multi-modal Trans-
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GT: blend the onions and garlic
MART: add garlic onion and ginger 
to the pot
PDVC: add salt and pepper to the 
bowl
VLTinT: blend the ingredients in the 
food processor
Ours: add chopped onions and 
garlic to the food processor and 
blend

add, blend stop, put

blender
hand

ring

bowl

hand
table

food plate
bowl

hand

bowl
spoon

onions
food

add, stir

bowl

pan

water

shrimpfood

GT: fry garlic and shrimp in the 
wok
MART: add salt and pepper to the 
pot
PDVC: add oil to the pot 
VLTinT: add oil and the wok to 
the wok
Ours: add the shrimp to the wok
and stir

window

nose

bottlewall

head

head
bottle

arm

light

wall

hair

hand

shirt

man

man

head

hair
shirt

head

shirt

window

hand

wall

bottle

nose

hold, play

GT: A man is standing in front of a 
window playing a violin
MART: a woman is standing in 
front of a mirror
PDVC: a woman is holding a violin 
and a woman
VLTinT: a woman is shown playing 
a violin in the background as well 
as a small group of people 
watching on
Ours: a man is seen standing in 
front of a windows holding
a violin and begins to play with a 
violin

GT: The guy lets go of the handles 
and puts his hands to his side
MART: he finishes and walks away
PDVC: he is standing on a table
VLTinT: the man finishes and 
stands up
Ours: the man stops and puts his 
hands in the air

Fig. 4. Qualitative comparison with MART (Lei et al., 2020), PDVC (Wang et al., 2021) and VLTinT (Yamazaki et al., 2022) on YouCookII
val and ActivityNet Captions ae-val split. The Subject, Predicate, and Object in a sentence are highlighted in the red, green and blue
fonts, respectively. Best viewed in color.

Table 4. Comparison With State-of-the-Art Methods on MSVD Test
Subset in the Micro-Level Evaluation Mode.

Method B M R C
OA-BTG (Zhang and Peng, 2019) 56.9 36.2 - 90.6

MSGA (Chen and Jiang, 2019) 52.5 34.1 71.3 88.7
ORG-TRL (Zhang et al., 2020) 54.3 36.4 73.9 95.2

JCRR (Hou et al., 2020) 57.0 36.8 - 96.8
SGN (Ryu et al., 2021) 52.8 35.5 72.9 94.3

MGRMP (Chen and Jiang, 2021) 55.8 36.9 74.5 98.5
BFSD (Zhong et al., 2022) 51.2 35.7 72.9 96.7

COST 56.8 37.2 74.3 99.2

former Encoder takes them as input to generate a natural sen-
tence, and achieves significant improvements compared to the
previous methods. In order to make a relatively fair compari-
son as we had not pre-trained our model on large-scale datasets,
such as HowTo100M or Kinectics, we use the visual features
provided by COOT (Ging et al., 2020) as input, whose video
embedding network pre-trained on HowTo100M, and obtain re-
sults comparable to SwinBERT, which demonstrates the poten-
tial of our method.

We also compare our methods with the state-of-art meth-
ods on MSVD dataset, and the results are presented in Table
4. As shown in Table 4, our COST could approach or surpass
the state-of-art method. Considering the significant differences
between the characteristics of this dataset and the former two
datasets, for example, the duration of video and the umber of
annotations corresponding to each video, which further proves
the robustness of our method.

Furthermore, the qualitative results of MART (Lei et al.,
2020), PDVC (Wang et al., 2021), VLTinT (Yamazaki et al.,
2022) and our COST are shown in Fig. 4. From Fig. 4, it
is evident that our COST approach outperforms the compared
methods in terms of generating accurate and concise captions,
regardless of the complexity of the scenarios. This is attributed
to two reasons. First, using the Detection-Text transformer,
the Objects in caption sentences can be learned explicitly (e.g.,
shrimp, hand, and windows) or implicitly (e.g., from bowl to
food processor, and from pan to wok). Second, the Action-Text
transformer in our method can perceive the key actions in cap-
tion sentences such as add, blend, put and hold. In comparison,
the existing methods often fail to recognize these crucial sub-
jects, objects, and verbs. The results indicate that under the
constraint of our objective, these two branches of transformers
can enforce the network to learn the key elements and supply
visual-linguistic interactions with discriminative semantics for
captions generation.

Lastly, as there exists many videos shot by moving cam-
eras in our evaluated datasets, for example, YouCookII contains
2000 long untrimmed videos describing 89 cooking recipes,
and many videos are shot with varying perspectives for provid-
ing good viewing experience, and we wonder whether the per-
formance of our model decreases significantly under such mov-
ing camera situation. We have random choose several video
clips shot by apparent moving cameras without cherry pick and
evaluate our COST on it, and the results are shown on 5. It can
be observed that there is no significant decrease in evaluation
metrics, which further confirms the robustness of our method.
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Fig. 5. Visualization of attention score map of all action tokens to [CLSa] token in Action-Text transformer for given video clips with
ground-truth caption ”add butter and milk to the mashed potatoes and mix”. More crimson color indicates high attention score. We also
show the video segments corresponding to the top four attention values. The number in the lower left corner of each picture indicates the
time order. Best viewed in color.

Table 5. Evaluation Results on Moving Scenes in YouCookII. * indicates
the subset picked from YouCookII shot with apparent camera movements.

Dataset B@4 M C R@4 ↓
YouCookII* 9.21 17.43 43.61 5.62
YouCookII 9.47 17.67 45.54 4.04

4.4. Visualization of Self-Attention in Action-Text Transformer
In Fig. 5, the central heatmap shows the visualization of the

attention scores in self-attention between [CLSa] and all action
tokens in Action-Text transformer. We obtain the scores by av-
eraging attention scores from all heads of the multi-head self-
attention module in our last transformer block. We choose this
branch because its granularity token [CLSa] is used as the in-
put for action classification, and whether it can utilize action
tokens effectively partially reflects the ability of our model to
understand the context of video. The ground-truth caption of
chosen video is ”add butter and milk to the mashed potatoes
and mix” and the segments corresponding to top four attention
values are presented, where each one consists of 6 figures as
setting in motion feature extraction network. According to the
chronological order of the action, we can see that the four video
segments are: finishing adding butter, readying to pour milk,

pouring the milk and stirring the mixture, which proves that
our Action-Text Transformer can capture the key actions effec-
tively via self-attention although there exists significant redun-
dancy in the action tokens (vast majority of this video’s content
is mixing the mixture).

4.5. Visualization of Cross-Granularity Attention in Video-Text
Transformer

To better understand the cross-granularity attention module,
we use the heatmap to visualize the cross-granularity attention
scores of the Video-Text transformer in Fig. 6. For the con-
venience of display, we concatenate the affinity matrix MHY
and MHX to get MH . At epoch 1, all values in the heatmap
are similar and the maximal value is only 0.001. The corre-
sponding caption results are noisy with the false predictions of
nouns and verbs, e.g., pan instead of butter. It indicates that the
cross-granularity attention is randomly initialized and interac-
tions between different modalities are not learned to align well.
After training for several epochs, a few entities dominate the
heatmap with the maximal value of 0.3 (see the bright verti-
cal lines in the heatmap). It indicates that our cross-granularity
attention module can successfully exploit the most relevant en-
tities from other modalities to inject the information from other
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epoch 1: add the pan epoch 4: add the potatoes and salt to the pot

epoch 7: add butter and milk to the pot and stir epoch 10: add butter and milk to the potatoes and mix

GT: add butter and milk to the mashed potatoes and mix

Fig. 6. Heatmap used to indicate the affinity matrixMH in the Video-Text transformer, where the row denotes the video tokens and the
column denotes the action and detection tokens. The false predictions of nouns and verbs are denoted in red font. For clarity, we only
show a few epochs in the training phase. Best viewed in color and zoom in.

Table 6. Ablation on multi-modality features and three-stream ar-
chitecture.

COST Variants
YouCookII (val)

B@4 M C R@4 ↓
COST-1 (v) 6.59 14.29 29.20 6.49
COST-1 (v+a) 7.72 15.45 33.98 4.60
COST-1 (v+a+d) 8.73 16.90 38.63 4.66
COST-2 (v+a) 7.79 15.74 34.99 5.82
COST-2 (v+d) 9.04 17.31 43.09 4.59
COST-3 (v+a+d) 9.47 17.67 45.54 4.04

branches of transformers. This way, the verb stir and the noun
pan can be corrected to mix and butter for more accurate cap-
tion results.

4.6. Ablation Studies
To study the influence of different components in the pro-

posed method, we conduct detailed ablation study on the
YouCookII val subset. Notably, we use the appearance features
extracted by TSN (Wang et al., 2016) in all COST-k variants,
where k denotes the number of transformer branches retained
in our COST method.
Effectiveness of multi-modality features. To verify the ef-
fectiveness of the multi-modality features, we construct three
COST-1 variants, i.e., COST-1 (v), COST-1 (v+a) and COST-1
(v+a+d). In particular, we only use the Video-Text transformer,
but change the input features as the combinations of the GloVe
text features and the concatenated features from video (v), ac-
tion (a) and detection (d). As shown in Table 6, the scores under
all metrics are improved considerably by integrating the action
or detection features. Moreover, the CIDEr score is boosted

Table 7. Ablation on training objectives.

COST Variants
YouCookII (val)

B@4 M C R@4 ↓
COST w/o La 8.95 17.31 42.90 5.27
COST w/o Ld 9.10 16.58 41.00 5.56
COST w/o Ld and La 9.01 16.29 40.58 5.91
COST 9.47 17.67 45.54 4.04

from 29.20% to 38.63%, if we include all the three-modality
features. It indicates that multi-modality features definitely fa-
cilitate to generate more accurate video captions. And it can be
observed that the incorporation of detection features into COST
has yielded notable performance improvements, highlighting
the potential for leveraging more detailed features to advance
the field of video captioning.
Effectiveness of three-stream transformers. To demonstrate
the effectiveness of the three-stream transformers compared
to the simple feature concatenation used in COST-1, we con-
struct three COST-k (k = 2, 3) variants, shown in Table 6. It
can be seen that the accuracy can be improved by using the
three-stream transformers, i.e., the CIDEr score improved from
38.63% to 45.54%. Meanwhile, the accuracy is considerably
improved by using more branches of transformers. This is be-
cause our cross-granularity attention module is able to capture
the most relevant semantic information from different visual-
linguistic interactions. Compared to the COST-1 variants, our
full model can obtain a more discriminative feature representa-
tions for video captioning.
Effectiveness of training objective. To investigate the effec-
tiveness and rationality of proposed training objective, we do
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MART:  remove the fat from the water and place on a paper towel
Ours:    add rice vinegar and rice to the seaweed and roll the seaweed

MART:  add the dough to the center of the dough
Ours:    put the mixture in the bowl and coat them well with the flour

Fig. 7. Generated Descriptions for Internet videos from the state-of-art MART (Lei et al., 2020) method and our COST method. The blue
number in the lower left corner of each picture indicates the time order.

Table 8. Ablation on cross-granularity attention module. concat
and para indicate concatenated and parallel cross-granularity at-
tention module separately. COST w/o cgam. denotes a COST vari-
ant without cross-granularity attention module.

COST Variants
YouCookII (val)

B@4 M C R@4 ↓
COST w/ concat 9.27 17.40 43.43 6.34
COST w/ para 9.47 17.67 45.54 4.04
COST w/o cgam. 7.55 15.11 30.32 8.03

ablation experiments to obtain corresponding results in Table 7.
We observe that removing either La or Ld has a negative im-
pact on the performance, especially when they are all removed,
i.e., 40.58 vs. 45.54 for CIDEr. This demonstrates that using
appropriate objective to make the semantics of visual-linguistic
interactions explicit can definitely contribute to accurate cap-
tions.

Effectiveness of cross-granularity attention module. To ver-
ify the importance of cross-granularity attention module to the
success of our method, we compare the performance of COST
with the two proposed architectures(concatenated and parallel
architectures) separately and the variant with cross-granularity
attention module removed. As shown in Table 8, our method
with cross-granularity module using parallel structure outper-
forms that with concatenated structure in all evaluation met-
rics, it is probably because that there exists feature gap between
the embeddings from different branches and the softmax op-
eration may hinders the information of one branch being sup-
pressed during fusion. And after removing the cross-granularity

module, CIDEr drops significantly, i.e., 30.32 vs. 45.54, which
demonstrate the effectiveness of this module to align the visual-
linguistic interactions of different granularities for accurate cap-
tions.

5. Generalization

In order to verify the generalization and practicality of our
method, we collected some videos outside the trained datasets
and evaluate the quality of generated descriptions to them. Be-
cause the video included in YouCookII dataset has relatively
clear action intention and contains abundant clips recording
the interactions between human and surrounding objects, we
collected some cooking videos from the Internet and applied
model trained on YouCookII to them. The way to extract
features from collected videos keeps consistent with that to
YouCookII, and we adopt trained models on both short and
long video clips to test the performance comprehensively. We
list the captions generated by MART (Lei et al., 2020) and our
method in Fig. 7. The first clip is one step of making fried
milk, which is a dessert of Cantonese cuisine, and lasts about
20 seconds to coat the fried milk with breadcrumbs. It can
be seen that our method not only makes a correct judgment
on the action(coat), but also correctly recognizes the state of
using substances(both breadcrumbs and flour are powdery ob-
jects), which is much better than MART. The second clip is one
step of making rice ball and lasts about 1 minute to add rice,
cooked beef and asparagus to seaweed and wrap them. Because
there are many added contents, our model makes wrong recog-
nition (the beef is recognized as vinegar because of the similar
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color) and generates redundant words (rice are added twice in
the clip). Nevertheless, the generated description is far more
accurate in action and much natural than the description gener-
ated by MART. Through these two examples, it illustrates that
although our model may make mistakes in generating object
words due to the interference of similar shape or color, it can
make accurate recognition on the actions of the subject and the
structure of generated sentence is very natural, which indicates
the effectiveness and practical value of our model.

6. Limitation

Although our model has demonstrated satisfactory perfor-
mance on three benchmark datasets and exhibits strong gener-
alization capabilities, there still exists some limitations. Firstly,
in terms of evaluation efficiency and model parameters, we ob-
serve certain disadvantages when compared to single-stream
methods like MART. Specially, under the same hardware con-
ditions, our model generates captions for approximately 2.47
videos per second, and the duration of each videos is about 5
minutes, whereas MART achieves a higher processing rate of
6.85 videos per second. Furthermore, our model has a larger
parameter count of 35.6M compared to MART’s 25.5M. Ad-
ditionally, it is worth noting that our model requires additional
data processing steps for extracting region features, which re-
quires additional pre-processing time.

7. Conclusion

In this paper, we propose the collaborative three-stream
transformers to exploit the interactions of objects, and the ac-
tions/relations of objects between different modalities of differ-
ent granularities in spatial-temporal domain. Meanwhile, with
the help of proposed training objective to specify the seman-
tics of visual-linguistic interactions in each branch, the cross-
granularity attention module is designed to align the interac-
tions modeled by the three branches of transformers, which
contributes to more accurate captions generation. Several ex-
periments conducted on the YouCookII, ActivityNet Captions
and MSVD datasets demonstrate the effectiveness of our pro-
posed method, and we also evaluate its generalization ability
through testing on Internet videos. In the future, we intent to
further improve the performance of our model with the help of
pre-training on large-scale datasets.
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