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Abstract
We propose a unified object-aware temporal learning framework for multi-view 3D detection and tracking tasks. Having
observed that the efficacy of the temporal fusion strategy in recent multi-view perception methods may be weakened by
distractors and background clutters in historical frames, we propose a cyclic learning mechanism to improve the robustness
of multi-view representation learning. The essence is constructing a backward bridge to propagate information from model
predictions (e.g., object locations and sizes) to image and BEV features, which forms a circle with regular inference. After
backward refinement, the responses of target-irrelevant regions in historical frames would be suppressed, decreasing the risk
of polluting future frames and improving the object awareness ability of temporal fusion. We further tailor an object-aware
association strategy for tracking based on the cyclic learning model. The cyclic learning model not only provides refined
features, but also delivers finer clues (e.g., scale level) for tracklet association. The proposed cycle learning method and
association module together contribute a novel and unified multi-task framework. Experiments on nuScenes show that the
proposedmodel achieves consistent performance gains over baselines of different designs (i.e.,dense query-basedBEVFormer,
sparse query-based SparseBEV and LSS-based BEVDet4D) on both detection and tracking evaluation. Codes and models
will be released.

Keywords Cyclic refiner · Backward refinement · Object-aware representation · Temporal learning · Multi-view 3D detection
and tracking
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1 Introduction

Perception with multi-view cameras has received exten-
sive attention in autonomous driving because of their comple-
mentarity in observing the physical world and the potential
to replace expensive sensors like LiDAR. Recent advanced
methods translate different perspective camera features to
the bird’s-eye-view (BEV) space (Huang et al., 2021; Li
et al., 2022c, b; Fischer et al., 2022; Shi et al., 2022), which
have demonstrated promising performances in 3D tasks. As
autonomous driving naturally is a temporal task, features in
past frames are usually used to enhance the representation
learning of current timestamp Li et al. (2022c); Liu et al.
(2022b); Huang and Huang (2022); Pang et al. (2022).

Revisiting recent related methods, we observe that the
models are commonly constructed in a “sequential” manner,
which forms a “Multi-view Images → Image/BEV Features

3 Department of Computer Science and Engineering,
University of North Texas, Denton, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-024-02176-7&domain=pdf
http://orcid.org/0000-0001-7578-3407


International Journal of Computer Vision

t t+1

: Image : Feature : Target : Distractor

B
ac

kw
ar
d

R
ef
in
em

en
t

Temporal
Fusion

B
ac

kw
ar
d

R
ef
in
em

en
t

Multi-view
Images

Image/BEV
Features

Predictions

Fo
rw

ar
d

In
fe
re
nc

e

Fo
rw

ar
d

In
fe
re
nc

e

Temporal
Fusion

Temporal
Fusion

Introducing distractor
in current temporal fusion style

After our object-
aware refining

(a) (b)

Fig. 1 a The illustration of our cyclic pipeline. After the first forward
inference at time t , instead of directly propagating the distractor-
contained features to the next frame through temporal fusion (black
arrows), we exploit the posterior predictions as object-aware prior
information to refine the former learned image and BEV features, i.e.,
“Backward Refinement” (red arrows). Then the refined features at time
t are forwarded to the temporal fusion and second forward inference
at time t + 1, which formulates a cyclic route to perform object-aware

representation learning. b Visualization of background clutter pollu-
tion in temporal fusion. At time t , no detections are predicted over
the background clutter (cyan circles). Then, at time t + 1, the tempo-
ral model (BEVFormer-Temporal) mistakenly produces false positives
over the background clutter, yet the static model (BEVFormer-Static)
surprisingly does not, illustrating that background with high semantics
in previous frames may corrupt future features after temporal fusion

→ Predictions” pipeline (see the black arrows shown in
Fig. 1a). In this strategy, the “Image/BEV Features” are used
for both forward inferences in the current frame and tem-
poral fusion in the next frame. However, complex driving
scenarios in the real world contain diverse distractors and
background clutters (the triangles in Fig. 1a). Directly and
simply using features from the previous frame in temporal
fusion may introduce historical interferences and degrade
the representation learning of future frames, which eventu-
ally leads to false positives (see the purple arrows in Fig. 1a
and visualization in Fig. 1b). In contrast, cognitive science
has proved that the human recognition system is more bril-
liant, which can introspect to backward refine the learned
knowledge before the next reasoning Bechtel (2013); Price
(1998).

Motivated by the above observation, for the first time, we
attempt to learn the multi-view image and BEV representa-
tions in a cyclic manner. The essence is to treat the posterior
predictions (e.g., object locations and sizes) of a frame as
the prior information to refine its Image/BEV representation
(see the red arrows in Fig. 1a). In the training of deep net-
works, the gradients are used to optimize model parameters,
which “implicitly” refine the learned representations. The
information in the predictions can be considered as “fake
gradients” in inference (without groundtruth) to “explicitly”
reinforce the learned representations. As the sparse predic-
tions contain compact object information, it is expected that
the refined image and BEV features are more discriminative,
and the responses of distractors are suppressed (the magenta
arrows in Fig. 1a). Notably, the proposed “backward refine-
ment” is conducted before temporal fusion, therefore, the

representation learning of the next frame can benefit from
the object-aware refinement process of the previous frame.

To this end, we propose an object-aware temporal learn-
ing framework for multi-view 3D detection and tracking.
The core is the proposed Cyclic Refiner, which backwards
the crucial information in model predictions to refine the
input image and BEV features. Specifically, for the predicted
objects, their corresponding features, which contain image
ROI (region of interest) embedding, BEV embedding and
head embedding,1 are concatenated to predict masks for fil-
tering distractors in image and BEV features. The mask can
be considered as the combination of different 2D gaussian
attention maps, where the peaks are the centers of objects
and the attention values are generated by linearly mapping
the concatenated features. Furthermore, it is aware that the
object sizes in different categories are diverse in BEV spaces
(e.g., truck and cone), and even the same object occupies dif-
ferent spatial ranges in the image and BEV spaces because of
camera projection. Therefore, it is necessary to encode object
scale information into the filter mask, which prevents over-
large mask including background clutters or too-small mask
missing target information. In our method, we assign each
object a scale level to determine its spatial attention range
in the filter mask. To realize that, we apply linear layers on
the concatenated features to predict an object’s scale levels
in BEV and image spaces, respectively.

Interestingly,weobserved that themultiple feature embed-
dings and scale level estimation benefit both detection and
the downstream tracking task. The embeddings provide suf-

1 Head embedding denotes the “object query” in DETR-based Carion
et al. (2020) methods and the ROI (region of interest) pooling feature
in other detection heads.
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ficient appearance clues for association, while the scale level
identifies objects with similar scales to reduce false matches.
We thus propose multi-clue matching and cascaded scale-
aware matching for object-aware association in tracking. In
particular, the multiple appearance features (i.e., image/BEV
embeddings from refined image/BEV features and head
embedding) are exploited to performmulti-clue matching by
computing the similarity. Then cascaded scale-aware match-
ing divides objects into different splits with the same scale
level to associate with box IoUs separately, which prevents
false matches caused by the overlap between large objects
and nearby small ones in BEV space. Notably, we also pro-
pose the buffering strategy to provide reasonable box IoUs
in BEV space, since the coverage scale of box predictions in
BEV plane is smaller than that in image space.

We apply our cyclic refiner to three different detec-
tion methods (i.e., dense-query-based BEVFormer Li et al.
(2022c), sparse-query-based SparseBEV Liu et al. (2023)
and LSS-based BEVDet4D Huang and Huang (2022)), and
use SimpleTrack Pang et al. (2021) after the detectors to
conduct the tracking baselines. Experimental results show
that our unified framework achieves 1.7%/1.8%/2.9% mAP
and 13.0%/13.9%/16.0% AMOTA improvements on the test
splits of nuScenes detection and tracking datasets respec-
tively, demonstrating the effectiveness and generality.

In summary, our main contributions are as follows: (1)
We propose the cyclic refiner to learn object-aware image
and BEV representations; (2) We propose the multi-clue
matching and cascaded scale-aware matching for robust
association; (3) We unify the BEV detection and tracking
tasks with the proposed temporal representation learning
framework; (4) Experiments show that the proposed model
generally improves baselines of different design concepts
(i.e., query-based and LSS-based) with considerable perfor-
mance gains on both BEV detection and tracking tasks.

2 RelatedWork

2.1 3D Detection with Multi-view Cameras

The modeling fashion in camera-based 3D object detec-
tion is transitioning from single view to multi-view because
of the natural complementarity among different cameras.
Recent state-of-the-art (SOTA) methods devote most efforts
to learning a more discriminative BEV representation. One
representative branch follows LSS Philion and Fidler (2020),
which lifts 2D image features to 3D space via the predicted
depth distributionsReading et al. (2021);Huang et al. (2021);
Li et al. (2022a). The other burgeoning branch is query-based
framework Wang et al. (2022b); Li et al. (2022c); Pang et al.
(2022); Li et al. (2023); Liu et al. (2023), which projects each
3D sampling point in BEV space to multi-view 2D images

for visual feature extraction. Specifically, the dense query-
based methods Li et al. (2022c); Pang et al. (2022); Jiang
et al. (2022) build explicit BEV features by arranging image
features into corresponding locations of the BEV plane. In
contrast, the sparse query-based works Wang et al. (2022b);
Liu et al. (2022a, 2023) directly encode image features into
the learnable queries. Since autonomous driving is a sequen-
tial task, recent works Huang and Huang (2022); Li et al.
(2022c); Liu et al. (2022b); Pang et al. (2022) exploit tem-
poral cues by aligning and fusing image/BEV features at
different timestamps to enhance representation learning and
detection capability. The noticeable drawback of this learn-
ing strategy is that the ability of temporal learning heavily
depends on the feature quality of historical features. Once
the historical features are polluted by distractors or back-
ground clutters, fusing them may even bring negative effects
to the representation learning of the future frames. There-
fore, the lack of post-processing historical features becomes
the bottleneck of most current temporal learning methods.
In this work, we propose the cyclic refiner to alleviate this
issue by filtering target-irrelevant responses in historical fea-
tures. In addition, FrustumFormer Wang et al. (2023a) and
MV2D Wang et al. (2023b) also consider feature learning
on target regions, which exploit the generated 2D propos-
als by off-the-shelf 2D detectors (i.e., MaskRCNN He et al.
(2017) and FasterRCNN Ren et al. (2015)) as priors for
query generation. Differently, our method exploits inherent
3D model predictions for object-aware refining, which is a
general design to improve 3D detectors while requiring little
computation overhead.

2.2 3D Tracking with Multi-view Cameras

Multi-view 3D tracking is the downstream task after object
detection, which aims to temporally associate the trajectories
of each object in 3D space and record their unique iden-
tity. With similar task definition, camera-based 3D tracking
usually adapts the design of 2D multi-object tracking meth-
ods Liang et al. (2022b, a) to perform association in 3D space.
In particular, following the tracking-by-detection paradigm,
many works Chaabane et al. (2021); Hu et al. (2022); Fis-
cher et al. (2022); Shi et al. (2022) match the detections of
a frame with previous tracklets by appearance similarity and
spatial proximity. Considering the depth information of 3D
scenes, SimpleTrack Pang et al. (2021) performs matching
by computing the 3D IoU between objects. Notably, Kalman
filter Welch and Bishop (1995) is exploited to predict current
locations of previous tracklets formotion compensation.QD-
3DTHu et al. (2022) further improves the accuracy ofmotion
prediction by learning temporal clues with LSTM Hochre-
iter and Schmidhuber (1997). Recently, MUTR3D Zhang
et al. (2022) and SRCN3D Shi et al. (2022) verify the effec-
tiveness of appearance-based association by matching with
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head embeddings or 2D ROI features. Compared with object
detection, tracking is more sensitive to distractors and back-
ground clutters, since association heavily relies on the quality
of the learned features to estimate the similarity of each two
objects. In this work, we show the generality of our cyclic
refiner in both 3D detection and tracking tasks. With the tai-
lored object-aware association, our method could perform
robust 3D tracking.

2.3 Online Update in 2DVisual Object Tracking

To handle the appearance variance of the target in 2D visual
object tracking (VOT), many works Bhat et al. (2019);
Danelljan et al. (2019); Cui et al. (2022) are dedicated to
the online update mechanism. MOSSE Bolme et al. (2010)
updates the learned filter by maximizing the response gap
between the target and background. DiMP Bhat et al. (2019)
introduces a predictor to online optimize the target model
instructed by a discriminative loss. ATOM Danelljan et al.
(2019) updates the classification layers with the proposed
fast optimization method for efficiency. FCOT Cui et al.
(2022) further verifies the effectiveness of online regres-
sion by merging the online model with the static one. In
this work, we design the cyclic refiner to online update the
image/BEV features, which eventually relieves the temporal
error accumulation caused by inaccurate predictions (e.g.,
false positives) in historical frames. This is clearly different
from the mechanism in VOT aiming to improve matching
robustness. Besides, the proposed method does not require
any gradient backward based optimization, which thus shows
a better trade-off between performance and efficiency in
inference.

3 Approach

Our proposed object-aware temporal representation learning
framework is detailed in this section. We first recap the detail
of our core contribution, i.e., cyclic refiner, in Sec. 3.1. Then
the designed object-aware association method for tracking is
described in Sec. 3.2. Finally, we conduct a unified detection
and tracking framework based on the proposed cyclic refiner
and association strategy in Sec. 3.3.

3.1 Cyclic Refiner

The essence of cyclic refiner is the proposed “backward
refinement” mechanism, which creates a cycle between the
image/BEV features and model predictions, together with
regular forward inference. The representations produced by
the cyclic refiner are used for temporal fusion.

As shown in Fig. 2, “backward refinement” first collects
information from each predicted object Oi (i = 1, 2, ..., N ).

In our method, both the representations and predicted val-
ues (i.e., location and size) of each object are exploited
for backward refinement. In particular, besides the appar-
ent image features Fimg ∈ R

H×W×C and BEV features

Fbev ∈ R
H

′×W
′×C , we also exploit the head features Fhead ,

which are sparse object queries (RN×C ) in DETR-based
methods Carion et al. (2020) and dense 2D features in other
detection heads, in the refinement module. With the cen-
ter and object size predicted for each object, we extract
the feature embeddings {eimg, ebev, ehead ∈ R

1×C } from
{Fimg,Fbev,Fhead} with ROI pooling Ren et al. (2015).
Notably, ehead = Fi

head for DETR-based methods. Then
we concatenate the three embeddings as the representation
ecat ∈ R

1×3C of an object. So far, the state of each object is
represented as Oi = {ecat , p}, where p denotes the object
location and size information.

Then “backward refinement” exploits the collected object
information O to refine the image/BEV features (i.e., Fimg

and Fbev). In our design, each object’s feature representation
and posterior prediction are transferred to a filter mask, serv-
ing as the prior information of image/BEV features. The filter
mask is used to decrease the responses of target-irrelevant
regions, e.g., distractors and background clutters. It contains
four steps, 1) Firstly, we generate an initial 2D weight mask
for each object, where the location corresponds to the pre-
dicted object center. 2) Secondly, we assign each object with
a scale level bymapping ecat to a one-hot vector, which deter-
mines the spatial scope of the 2D weight mask. The weights
of the positions out of the spatial scope are set to zero. 3)
Thirdly, the weight distribution of the positions inside the
spatial scope is predicted by linearly mapping ecat , which
assigns higher weights for the discriminative areas of each
object while suppressing target-irrelevant parts (e.g., corners
and scattered background). 4) Finally, the weight masks of
objects belonging to the same scale level l are combined to
get the final filter mask Ml . Figure 2 illustrates the process
of generating filter masks in different scale levels. For sim-
plicity, only three scale levels are visualized in Fig. 2.

We treat the predicted filter mask of a scale level Ml as the
spatial attention, which is applied to both image and BEV
features by element-wise multiplication. The masked fea-
tures will be further processed by DCNs Dai et al. (2017)
of different kernel sizes, improving the scale awareness of
the learned representations. The refined features from dif-
ferent scale levels are concatenated and fused with a DCN
layer, forming the object-aware features F̂img ∈ R

H×W×C

and F̂bev ∈ R
H

′×W
′×C . The original features (i.e., Fimg and

Fbev) are also used for fusion to avoid losing informative
details.

After refining the image and BEV features by the cyclic
refiner at time t , the next step is to forward the refined
object-aware representations F̂t = {F̂t

img, F̂
t
bev} to the next
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Fig. 2 Illustration of the “backward refinement” in the proposed cyclic
refiner. Each predicted object determines its scale level (i.e., small, mid
and large) and weight in the mask by linearly mapping the concatenated

three feature embeddings. By applying the masks on the image/BEV
features, it can filter target-irrelevant distractors and benefit representa-
tion learning

frame t +1. The fusion mechanism is not the contribution of
our work, therefore, we simply follow the baseline methods
(i.e., BEVFormer Li et al. (2022c) and BEVDet4D Huang
and Huang (2022)) to construct temporal fusion modules.
Notably, the baselines use deformable attention to solely fuse
BEV features in different timestamps, we inherit this design
for the temporal fusion of image features. Here we describe
how our refined object-aware features F̂t guide representa-
tion learning in the temporal module, as shown in Fig. 3.

Instead of simple concatenation, the temporal fusion
exploits the object-aware prior knowledge of F̂t to further
refine the learned features Ft+1 = {Ft+1

img,F
t+1
bev } at time

t + 1, which benefits the successive representation learning
of the forward inference. Specifically, the temporal object-
aware prior of F̂t is employed to reconstruct Ft+1 with the
deformable attentionZhuet al. (2020).As illustrated inFig. 3,
the refined object-aware features F̂t concatenate with the
features Ft+1 to generate object-aware attention weights A
and sampling offsets Δs. The sampling offsets Δs are then
applied to the sampling grid s. to improve the sampling loca-
tions on target regions. The attention weightsA are expected
to perceive and assign higher values to informative areas
while suppressing target-irrelevant ones. Finally, the features
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Fig. 3 Illustration of the temporal fusion with our object-aware repre-
sentations. The refined image/BEV features at time t will concatenate
with the learned features at time t+1 to generate object-aware attention
weights and sampling offsets, guiding feature sampling on target-
relevant regions in the deformable attention Zhu et al. (2020)

Ft+1 are refined with the object-aware attention weights A
and the shifted sampling points s + Δs. The calculation is
defined as

DeformAttn(A, p,Δ p,Ft+1) =
H∑

h=1

Wh
[ K∑

k=1

Ahk · W′
hF

t+1(s + Δshk)
]
,

(1)

where h and k are the indexes of the attention head and sam-
pled feature point, respectively. W

′
h ∈ R

Cv×C and Wh ∈
R
C×Cv are the learnable weights (Cv = C/H by default).

Δshk andAhk denote the sampling offset and attentionweight
of the kth sampling point in the hth attention head, respec-
tively (please refer to Zhu et al. (2020) for more details).
With the object-aware attention weights and sampling loca-
tions, the temporal fusion could propagate the refined target
information to the forward inference of the next frame, which
benefits the representation learning and prediction with the
enhanced object awareness ability.

3.2 Object-aware Association

As mentioned, our ultimate purpose is to build a unified
detection and tracking framework which can both benefit
from the proposed cyclic refiner. Therefore, a tailored asso-
ciation method for tracking to fully take advantage of the
refined image and BEV features is necessary.

As shown in Fig. 4, given the detections Dt of frame t
and existing tracklets T (empty set for the first frame), our
object-aware association (dubbed OAA) aims to match each
detected object from Dt with its corresponding tracklet in
T . Notably, before the association, we adopt Kalman Fil-
ter Welch and Bishop (1995) to predict the location in the
current frame for each tracklet in T . The association con-
tains twomain steps, i.e.,Multi-clueMatching and Cascaded
Scale-aware Matching.
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Fig. 4 Architecture of the proposed Object-aware Association (OAA).
The Multi-clue Matching first matches the new detections and existing
tracklets with the weighted summation of three embedding similarity
matrixes. Then the 3D boxes of unmatched detections and tracklets are

buffered with the assigned scale level of cyclic refiner, which are fed
into the Cascading Scale-aware Matching to perform hierarchical IoU
matching from large-scale objects to small-scale ones

3.2.1 Multi-clue Matching

The similarity score between appearance embeddings of two
objects is regarded as crucial evidence to judge if they are
the same object in 2D MOT. We follow this design and
adapt it for multi-view 3D tracking. Specifically, besides
the commonly-used image ROI pooling embedding êimg ,
we introduce BEV and head embeddings (i.e., êbev and
ehead ) as extra appearance clues, which form the appear-
ance state E = {êimg, êbev, ehead} for each object. Notably,
{êimg, êbev} are sampled from the refined object-aware fea-
tures F̂, which aims to perform accurate matches with refined
target information. Given the existing tracklets T = {T j =
{ET j , p}, j = 1, 2, ..., M} and new detections D = {Di =
{EDi , p}, i =1, 2, ..., N } (p denotes the object location and
size information, defined in Sec. 3.1), the Multi-clue Match-
ing computes similarities between ET and ED with the
normalized inner product, which generates three similarity
matrixes {Cimg,Cbev,Chead}. The weighted summation of
{Cimg,Cbev,Chead} is regarded as the cost matrixC in Hun-
garian Algorithm Kuhn (1955) to find the optimal bipartite
matching. The calculation is formulated as

C = wimg ·
〈
êDimg, ê

T
img

〉
+ wbev ·

〈
êDbev, ê

T
bev

〉

+ whead ·
〈
eDhead , e

T
head

〉
,

(2)

where wimg, wbev, whead are the weight coefficients and 〈·〉
represents the operation of normalized inner product. The
matched detections are used to update associated tracklets,

and unmatched detections Dremain and tracklets Tremain are
sent to the second Cascaded Scale-aware Matching.

3.2.2 Cascaded Scale-aware Matching

The second association is Cascaded Scale-aware Matching,
which associates object by the box IoUs between Tremain and
Dremain . We noticed that the coverage scale of an object box
in BEV space is smaller than that in image space, especially
for the objects close to cameras, making it lack sufficient
context clues for matching. Motivated by BIoU Yang et al.
(2023), we use the buffering strategy to expand the matching
space, which buffers (enlarges) the box B of each object with
a ratio r . The operation is formulated as

Bbu f f er = (1 + r) · B. (3)

Notably, we set larger buffer ratio for the objects with
small scale level (i.e., predicted by the cyclic refiner in
Sec. 3.1), since it is difficult to generate reasonable IoUs for
small objects. Besides, it is also noticed that, after Kalman
Filter propagation, large objects are more likely to cover
nearby small objects in BEV space, which may cause false
matches and track fragmentation. Therefore, we perform
IoU association from large to small scales, and only allow
the matches between close scale levels. Specifically, for the
detections with scale level l, we select unmatched tracklets
in scale levels

[
l − 1, l, l + 1

]
to perform IoU matching.

After the two-step association, the unmatched outdated
tracklets Tre−remain will be deleted from T , and the remain-
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features (red arrows). The refined features are then used for temporal
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object tracking (purple arrows) (Color figure online)

ing detections Dremain with scores higher than τ will be
initialized as new tracklets.

In summary, the proposed object-aware association per-
forms a two-step matching after the detection of each frame,
as shown in Alg. 1. The pipeline consists of four stages: 1)
The Kalman Filter is applied to predict the location for each
tracklet in T (line 1 to 3 in Alg. 1); 2) The first associa-
tion is performed between Dt and T with multi-clues, i.e.,
head embedding ehead , BEV embedding êbev and image ROI
pooling embedding êimg from the refined features. The three
embeddings respectively generate the similarity matrixes
{Cimg,Cbev,Chead} with tracklets T by inner product. The
summation of the three similarity matrixes is regarded as the
cost matrix in Hungarian Algorithm Kuhn (1955) for match-
ing. The associated tracklets will be updated with the newly
detected objects, and the unmatched detections and tracklets
are kept in Dremain and Tremain , respectively (line 4 to 6 in
Alg. 1); 3) The second association matches objects between
Tremain and Dremain based on box IoUs. The box of each
object B is bufferedwith a ratio r (line 7 to 10 inAlg. 1). Then,
IoU association is performed from large to small scales,
which divides the matching group by the assigned scale
level l (line 11 to 15 in Alg. 1). 4) The unmatched tracklets
Tre−remain are deleted from T , and the remaining detections
Dremain are filtered with the score threshold τ to generate
new tracklets (line 16 to 22 in Alg 1).

3.3 Unified Detection and Tracking Framework

With the proposed Cyclic Refiner andObject-awareAssocia-
tion, we construct a unified temporal representation learning
framework for both BEV detection and tracking, as shown in
Fig. 5. Our framework consists of three main parts: Input,
Object-aware Temporal Representation Learning module,
Detection and Tracking heads. Taking multi-view images at
time t as input, the image backbone first extracts image fea-
tures. Then, the view-transformer transforms image features
to the BEV representation, serving as the input of task-
specific heads. Before the next forward inference at time
t + 1, the proposed cyclic refiner exploits the information
in the predictions at time t to refine the image and BEV fea-
tures. After that, the refined features are used for temporal
fusion between t and t + 1.

4 Experiments

In this section, we first recap the experimental setup in
Sec. 4.1. Then, we respectively present the evaluation results
(Sec. 4.2) in detection and tracking tasks. Finally, we detail
the ablation studies (Sec. 4.3) and analysis (Sec. 4.4) to
demonstrate the effectiveness of the proposed methods.
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Algorithm 1: Pseudo-code of OAA.
Input: features of current frame; detections Dt ;
existing tracklets T ; score threshold τ ;
Output: updated tracklets T

/* Predict New States of Tracklets */
1 for T j in T do
2 T j ← KalmanFilter(T j )

3 end

/* Multi-clue Matching */
4 Associate T and Dt using {êimg, êbev, ehead }
5 Dremain ← remaining objects from Dt
6 Tremain ← remaining tracklets from T

/* Cascaded Scale-aware Matching */
7 for Di in Dremain do
8 l ← Scale Level(Di ) (Cyclic Refiner in Sec. 3.1)
9 Buffer box scales B

10 end
/* Second Association */

11 for l in {large,mid, small} do
12 Dselect ← Dremain

[
l
]

13 Tselect ← Tremain
[
l − 1, l, l + 1

]

14 Associate Tselect and Dselect using IoU
15 end

/* Delete Unmatched Tracklets */
16 Tre−remain ← remaining tracklets from Tremain
17 T ← T \ Tre−remain

/* Initialize New Tracklets */
18 for Di in Dremain do
19 if Di .score > τ then
20 T ← T ∪ {Di }
21 end
22 end

23 Return: T

4.1 Experimental Setup

4.1.1 Dataset and Metrics

We conduct experiments on nuScen-es Caesar et al. (2020),
which collects autonomous driving data from 1,000 scenes.
The benchmark is composed of 40,157 samples and is
divided into 28,130, 6,019, and 6,008 ones for training,
validation, and testing, respectively. For the 3D detection
task, we adopt mean average precision (mAP) and nuScenes
Detection Score (NDS) as primary metrics, as well as
five True Positive (TP) metrics, including mATE, mASE,
mAOE, mAVE and mAAE. For the 3D tracking task, we
follow the prior works Fischer et al. (2022); Zhang et al.
(2022); Shi et al. (2022) to use average multi-object track-
ing accuracy (AMOTA) and average multi-object tracking
precision (AMOTP) as the major evaluation criteria, along
with RECALL, MOTA, IDS. Reports of our methods on all

detection and tracking metrics will be publicly available on
nuScenes leaderboard.

4.1.2 Implementation Details

To verify the effectiveness and generality of the proposed
methods, we apply Cyclic Refiner and OAA on recent state-
of-the-art BEVFormer Li et al. (2022c) (both Small and
Base versions), SparseBEV Liu et al. (2023) and BEVDet4D
Huang and Huang (2022). The unified detection and track-
ing frameworks, i.e., CycBEVFormer, CycSparseBEV and
CycBEVDet4D, are evaluated on both 3D detection and
tracking tasks. Notably, there is no need to fine-tune the
model for tracking after the training of detection. Following
the tracking-by-detection paradigm, we construct the tracker
by applying our plug-and-play object-aware association to
the trained detectors. The training and inference settings are
the same as the three baseline methods. We recommend the
readers to Li et al. (2022c) and Huang and Huang (2022) for
more details. All our models are trained on 8 NVIDIA RTX
3090 GPUs and the inference is measured on one NVIDIA
RTX 3090 GPU.

In Sec. 3.1, we present the definition of “scale level”,
whichdetermines how togroup-wisely process the image/BEV
features in the cyclic refiner, and serves as an important clue
in the association strategy. For the image features, which
usually have small spatial sizes (e.g., 15 × 25), we set scale
level L = 3 to model the object attentive from hierarchical
large, middle, and small levels, which also corresponds to
the kernel sizes {5, 3, 1} of DCNs, respectively. For the BEV
features, which represent the whole driving scenarios and
usually have a larger spatial size of 200× 200, we set L = 5
to perform dedicated refining. The kernel sizes of DCNs are
{9, 7, 5, 3, 1} in this case. Furthermore, the scale levels in
OAA follow the settings in BEV features, since the object
size may vary in different camera views. More analyses are
presented in Sec. 4.4.

4.2 State-of-the-art Comparison

4.2.1 NuScenes Detection Evaluation

Table 1 presents the performance comparison with state-
of-the-art methods on both validation and test splits of
nuScenes detection benchmark. The proposed CycSparse-
BEV and CycBEVFormer-Small outperform the baselines
for 1.8%/4.3% mAP and 2.4%/3.9% NDS on the test split,
respectively. On the indicator mAVE which reflects the abil-
ity of temporal modeling, our methods impressively surpass
the baseline SparseBEV /BEVFormer-Small for 2.2%/4.7%,
respectively. The results prove that filtering target-irrelevant
distractors before temporal fusion is necessary to achieve bet-
ter representation learning. On the validation split, our Cyc-
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SparseBEV achieves 46.7% mAP, surpassing most recent
SOTAdetectors with the backbones of ResNet-50 or ResNet-
101 He et al. (2016), without any bells and whistles (e.g.,
test time augmentation). LSS-based BEVDet4D Huang and
Huang (2022) also achieves consistent improvements with
our Cyclic Refiner. The resulted object-aware detector, i.e.,
CycBEVDet4D, outperforms the baseline for impressive
2.9%mAPand5.2%NDSon the test split respectively, show-
ing the effectiveness of object-aware temporal representation
learning. All models and configs for the test split evaluation
will be released.

4.2.2 NuScenes Tracking Evaluation

In Table 2, we report our performances on both valida-
tion and test splits of nuScenes tracking benchmark. The
proposed CycSparseBEV achieves state-of-the-art perfor-
mance in the camera-only tracking task and exceeds the
baseline method by a large margin. Specifically, our Cyc-
SparseBEV achieves significant AMOTA improvements of
13.9%/14.6% on the test/val-idation splits over the base-
line model. CycBEVFormer-Base and CycBEVDet4D also
outperform the baselines for 13.0% /16.0% AMOTA on
the test split respectively, showing the generalization of
the proposed cyclic pipeline and object-aware association.
Moreover, AMOTP is an important criterion in practical
applications to evaluate the precision of a tracking sys-
tem, which is crucial for safe autonomous driving. As
shown in Table 2, our CycSparseBEV decreases the AMOTP
for significant 45.3%/47.0% on the test and validation
splits respectively, showing the robustness and reliability
of our model. CycBEVFormer-Base and CycBEVDet4D
also achieve considerable gains with the proposed cyclic
refiner and object-aware association, i.e., 1.452/1.618 →
1.055/1.317 AMOTP on the test split, showing the effec-
tiveness and generality of our method.

4.3 Component-wise Ablation

This section presents the ablations on components of the pro-
posed Cyclic Refiner and Object-aware Association.

4.3.1 Feature Refinement for Detection

We first analyze the influence of refining features with the
proposed cyclic refiner on the detection task. The ablation
experiments are conducted on CycBEVFormer-Small, and
results are presented in Table 3. By directly applying the
cyclic refiner on the image features of different views (i.e.,
“ImgRefine”), our model obtains mAP/NDS gains of 1.6%
and 1.5%, respectively ( 2©v.s. 1©). It shows that BEV rep-
resentation also enjoys the bonus of the proposed cyclic
refiner (i.e., “BEVRefine”),which improves 2.0%mAPcom-

pared with the baseline model ( 3©v.s. 1©). When applying
the proposed module on both image and BEV features, it
can further bring 0.8%/1.5% gains on mAP/NDS ( 4©v.s. 3©),
respectively, which shows the effectiveness of the proposed
object-aware temporal learning framework.

4.3.2 Feature Refinement and OAA for Tracking

We further analyze the influence of refining features with
the cyclic refiner and conducting object-aware association
(OAA) for tracking task based on CycBEVFormer-Small.
Results are presented in Table 4. It shows that even with-
out OAA, applying “ImgRefine” or “BEVRefine” still brings
considerable performance gains compared with the baseline
method BEVFormer ( 3©, 5©, 7©v.s. 1©), which evidence that
the proposed cyclic refiner empowers both detection and
tracking tasks. Consistent with the detection task, refining
both image and BEV features can achieve better perfor-
mance, which surpasses the baseline for 3.1% AMOTA and
1.6% AMOTP, respectively ( 7©v.s. 1©). Compared with the
default association method SimpleTrack Pang et al. (2021),
the proposed OAA shows superiority for achieving 2.3%
AMOTA gains ( 2©v.s. 1©). Notably, when applying both
cyclic refiner and OAA on the baseline model, it brings con-
siderable performance gains of 9.2% on AMOTA and 34.0%
on AMOTP, respectively ( 8©v.s. 7©). This demonstrates the
complementarity of cyclic temporal learning and object-
aware association for multi-view 3D tracking.

4.3.3 Backward Refinement and Temporal Fusion on Image
Features

The “backward refinement” and temporal fusion are two
crucial modules in our framework. As the baseline method
BEVFormer only designs temporal fusion for BEV features,
it is necessary to prove applying refinement and conduct-
ing temporal fusion on image features is crucial. The results
on detection task are presented in Table 5, and tracking
performances are reported in Table 6. Table 5 shows that
without “backward refinement” and temporal fusion of image
features, the detector obtains mAP score of 37.0% on the
nuScenes detectionval set.When refining theBEVfeatures,
it brings 1.1 points gains of mAP ( 2©v.s. 1©). One interesting
observation is that applying temporal fusion on image fea-
tures without refinement degrades the performance for 0.9%
mAP ( 3©v.s. 1©), which in turn proves our claim that the dis-
tractors in historical features may interfere the representation
learning. When simultaneously refining and applying tem-
poral fusion on image and BEV features, it shows the best
performance with 39.8% mAP and 50.5% NDS ( 4©), which
proves the effectiveness of our method. The experimental
results on the tracking task (shown in Table 6) also demon-
strate consistent conclusions.
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Table 3 Influence of refining
features with the proposed
cyclic refiner

# Method ImgRefine BEVRefine mAP↑ NDS↑ mAVE↓ mAAE↓
1© Cycer-S 0.370 0.479 0.437 0.220

2© Cycer-S � 0.386 0.494 0.445 0.202

3© Cycer-S � 0.390 0.490 0.477 0.211

4© Cycer-S � � 0.398 0.505 0.439 0.201

Experiments are conducted with nuScenes detection val set. ImgRefine/BEVRefine denote refining image
and BEV features, respectively. Cycer-S indicates CycBEVFormer-Small

Table 4 Influence of refining
features and object-aware
association (OAA) for tracking
task

# Method ImgRefine BEVRefine OAA AMOTA↑ AMOTP↓ MOTA↑
1© Cycer-S 0.274 1.506 0.249

2© Cycer-S � 0.297 1.492 0.282

3© Cycer-S � 0.295 1.482 0.281

4© Cycer-S � � 0.370 1.156 0.296

5© Cycer-S � 0.300 1.464 0.284

6© Cycer-S � � 0.376 1.149 0.296

7© Cycer-S � � 0.305 1.490 0.303

8© Cycer-S � � � 0.397 1.150 0.320

Experiments are conducted on nuScenesval set. The default associationmodule without OAA is the standard
SimpleTrack Pang et al. (2021)

Table 5 Influence of applying
refinement and temporal fusion
on image features for detection
task

# Method Back ImgTemp mAP↑ NDS↑ mAVE↓ mAAE↓
1© Cycer-S 0.370 0.479 0.437 0.220

2© Cycer-S � 0.381 0.486 0.488 0.200

3© Cycer-S � 0.361 0.468 0.517 0.203

4© Cycer-S � � 0.398 0.505 0.439 0.201

Experiments are conducted on nuScenes val set. “Back” and “ImgTemp” denote “backward refinement” and
temporal fusion for image features, respectively

Table 6 Influence of applying
refinement and temporal fusion
on image features for tracking
task

# Method Back ImgTemp OAA AMOTA↑ AMOTP↓ MOTA↑
1© Cycer-S � 0.297 1.492 0.282

2© Cycer-S � � 0.366 1.240 0.306

3© Cycer-S � � 0.327 1.454 0.310

4© Cycer-S � � � 0.397 1.150 0.320

Experiments are conducted on nuScenes val set. “Back” and “ImgTemp” denote “backward refinement” and
temporal fusion for image features, respectively

Table 7 Ablation study for
Object-aware Association on the
nuScenes trcking val set

# Method MC Buff Cascade AMOTA↑ AMOTP↓ MOTA↑
1© Cycer-S 0.305 1.490 0.303

2© Cycer-S � 0.356 1.287 0.303

3© Cycer-S � 0.349 1.293 0.301

4© Cycer-S � 0.365 1.295 0.308

5© Cycer-S � � 0.381 1.204 0.316

6© Cycer-S � � 0.384 1.189 0.317

7© Cycer-S � � 0.371 1.192 0.317

8© Cycer-S � � � 0.397 1.150 0.320

“MC”, “Buff”, and “Cascade” denote multiple clues, buffering strategy, and cascaded matching
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4.3.4 Modules in Object-aware Association

We explore the influences of the modules in OAA, i.e., multi-
clue matching (MC), buffering strategy (Buff), and cascaded
scale-aware matching (Cascade), in Table 7. It shows that the
three modules bring performance gains of 5.1%/4.4%/6/0%
on AMOTA of the nuScenes tracking val set, respectively
( 2©, 3©, 4©v.s. 1©). This proves the effectiveness and comple-
mentarity of our method. Notably, the Cascade solely brings
the largest performance gains compared with the two other
modules, which demonstrates associating objects in differ-
ent size groups is necessary to perform robust multi-view 3D
tracking. Applying all the three modules achieves the best
performance with 39.7%AMOTA and 1.150AMOTP, show-
ing the cooperation of our designs contributes to an effective
and robust tracker.

4.4 Further Analysis

4.4.1 Positive/Negative Influence of Temporal Fusion

As mentioned before, we argue that directly and simply
using features from the previous frame in temporal fusion
may introduce historical distractors and degrade the repre-
sentation learning of future frames. We demonstrate this by
ablating the positive/negative influence of temporal fusion
based on the baseline method BEVFormer-Small Li et al.
(2022c), as shown in Table 8. The improved performance
on the commonly detected targets (i.e., “Intersection Set”)
shows that temporal information could help to perceive
the accurate position (e.g., 0.762 mIoU of BEVFormer-
Temporal). The newly detected objects on “Difference Set”
of the temporal version further proves the effectiveness of
temporal learning. However, the objects on “Difference Set”
of the static version, which has been detectedwithout tempo-
ral fusion, are surprisinglymissed after introducing historical
features. It evidences our claim that the background clut-
ters of previous frames would distract the feature learning
through temporal fusion, resulting in inferior performance
(e.g., 3.9% mAP loss). In comparison, our CycBEVFormer-
Small in Table 8 suffers only 0.9% mAP loss, showing the
effectiveness of the proposed “Backward Refinement” to
relieve the negative influence of introducing distractors in
temporal fusion.

4.4.2 FP/FN Number of Temporal/Static Version

Table 8 shows that the direct introduction of temporal fusion
brings newly detected TP objects (i.e., the “Difference Set”
of the temporal version) while losing part detected ones
(i.e., the “Difference Set” of the static version) compared
with the static version. A natural question is where the lost

Fig. 6 Comparison of FP/FN number under different confidence score
thresholds on nuScenes detection val set

part goes and the newly detected part comes from? We fur-
ther explore the temporal influence by detailing the FP/FN
number under different score thresholds in Table 6. The FP
curve shows that the direct temporal fusion causes more false
positives compared with the static version (i.e., BEVFormer-
Temporal v.s. BEVFormer-Static), which corresponds to the
lost part. This demonstrates the historical backgroundclutters
would distract the target prediction. Notably, the difference
of FP number between the temporal and static versions
grows with the score thresholds, indicating that the tar-
get perception is more interfered by temporal distractors
of high semantics (e.g., threshold > 0.6, as illustrated in
Fig. 1b). In comparison, our CycBEVFormer-Temporal has
fewer FPs with the proposed object-aware temporal learning,
showing the effectiveness. The FN curve shows the pos-
itive influence of temporal fusion for decreasing the risk
of missing targets, compared with the static version. Our
method significantly improves the FN number of the baseline
BEVFormer-Temporal under all score thresholds, evidencing
the necessity of filtering target-irrelevant distractors before
temporal fusion.

4.4.3 Runtime Analysis

Running speed is a crucial metric for practical autonomous
driving deployment. We present the runtime analysis to
demonstrate that our method is well-balanced between the
efficiency and effectiveness, as shown in Table 9. Based on
BEVFormer-Base, our Cyclic Refiner only slows down the
runtime for negligible 0.104FPSwhile bringing considerable
performance gains of 1.7% mAP scores ( 5©v.s. 4©). Besides,
our temporal method is also resource-friendly for achieving
impressive 5.8% mAP improvements with a small storage
cost of 6.3M compared with the static baseline ( 5©v.s. 3©),
which also proves the effectiveness of our object-aware repre-
sentation learning. CycSparseBEV and CycBEVDet4D also
enjoy the bonus of our method with small overload ( 7©v.s. 6©,
9©v.s. 8©), showing the generality of our method.
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Table 8 Positive/Negative influence of temporal fusion

Method Version Detection Result Overall (Insec. + Diff.)

Intersection Set Difference Set

mAP NDS Num. mIoU mAP NDS Num. mAP↑ NDS↑ Num.↑
BEVFormer Static 0.281 0.390 353,968 0.760 0.039 0.015 38,337 0.320 0.405 392,305

Temporal 0.293 0.448 0.762 0.077 0.031 59,555 0.370 0.479 413,523

Ours Static 0.312 0.402 380,932 0.761 0.009 0.003 8254 0.321 0.406 389,186

Temporal 0.332 0.476 0.766 0.066 0.029 46,410 0.398 0.505 427,342

The static and temporal versions are compared by evaluating the commonly detected TP objects (i.e., Intersection Set, dubbed Insec.) and exclusive
ones (i.e.,Difference Set, dubbed Diff.) on the nuScenes detection val set. Num. denotes the number of detected TP objects and mIoU is the mean
intersection over union

Table 9 Runtime and result
comparison on nuScenes
detection val set

# Method Backbone HF FPS FLOPs # Param. mAP↑ NDS↑
1© BEVFormer-S R101 1 2.738 622.3G 59.6M 0.370 0.479

2© Cycer-S R101 1 2.601 630.5G 65.4M 0.398 0.505

3© BEVFormer-B R101 0 n/a 1303.5G 68.7M 0.375 0.448

4© BEVFormer-B R101 1 1.747 1324.9G 69.1M 0.416 0.517

5© Cycer-B R101 1 1.643 1338.5G 75.0M 0.433 0.532

6© SparseBEV R50 7 21.732 257.9G 44.6M 0.448 0.558

7© CycSparseBEV R50 7 20.916 260.1G 46.9M 0.467 0.582

8© BEVDet4D R50 8 2.014 1053.1G 57.8M 0.355 0.482

9© CycBEVDet4D R50 8 1.819 1072.4G 63.7M 0.374 0.537

The inference is measured on a 3090 GPU. Cycer-S and Cycer-B indicate our CycBEVFormer-Small and
CycBEVFormer-Base, respectively. “HF” denotes the number of used historical frames

Table 10 Ablation for
image/BEV scale levels on
nuScenes val set

# Method Img scale levels BEV scale levels mAP↑ NDS↑ AMOTA↑ AMOTP↓
0 3 5 0 3 5 7

1© Cycer-S � � 0.370 0.479 0.297 1.492

2© Cycer-S � � 0.386 0.494 0.370 1.156

3© Cycer-S � � 0.383 0.489 0.356 1.204

4© Cycer-S � � 0.386 0.489 0.366 1.142

5© Cycer-S � � 0.390 0.490 0.376 1.149

6© Cycer-S � � 0.381 0.486 0.344 1.237

7© Cycer-S � � 0.398 0.505 0.397 1.150

Cycer-S indicates CycBEVFormer-Small

Table 11 Ablation for detector
and association method on the
nuScenes tracking val set

# Detector Association mAP↑ NDS↑ AMOTA↑ AMOTP↓
1© BEVFormer-S SimpleTrak Pang et al. (2021) 0.370 0.479 0.274 1.506

2© BEVFormer-S OAA 0.370 0.479 0.337 1.306

3© Cycer-S SimpleTrak Pang et al. (2021) 0.398 0.505 0.305 1.490

4© Cycer-S OAA 0.398 0.505 0.397 1.150

BEVFormer-S indicates the baselineBEVFormer-Small. OAAdenotes the proposedObject-aware association
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Table 12 Ablation for the
object-aware strategy

# Method Object-aware strategy mAP↑ NDS↑ AMOTA↑ AMOTP↓
1© BEVFormer-S None 0.370 0.479 0.305 1.490

2© Cycer-S Ocean Zhang et al. (2020) 0.367 0.386 0.286 1.516

3© Cycer-S Cyclic Refiner 0.398 0.505 0.397 1.150

BEVFormer-S denotes the baseline BEVFormer-Small Li et al. (2022c)

4.4.4 Different Scale Levels for Image/BEV Feature

Asmentioned above, the scale level is designed to divide each
object into the matched group for customized modeling area,
which prevents overlarge mask introducing background clut-
ters or too small mask missing target details. We ablate the
influence of different scale levels for refining image/BEV
features based on CycBEVFormer-Small in Table 10. The
results show that the scale level of 3 is optimal for image fea-
tures to capture object-aware messages from different spatial
scopes ( 2©v.s. 1©, 3©). The version with a BEV scale level of
5 achieves superior performance ( 5©v.s. 4©, 6©), which also
evidences that the object sizes in the BEV feature are more
diversified compared with the image space and require more
fine-grained modeling. Notably, 3 image scale levels and 5
BEV scale levels contribute the best performancewith 39.8%
mAP and 50.5% NDS ( 7©), showing the effectiveness of our
proposed Cyclic Refiner.

4.4.5 Different Detectors and Association Methods

As a common sense, the improvement of detectors usually
consistently enhances the tracking robustness. This conclu-
sion is also revealed by our experiment in Table 7. Yet, since
the tracking module is a plug-and-play design to guarantee
its generality and simplicity in our work, which is not jointly
trained with the detector, it thus has no clear effect on the
detection model. We summarize the individual performance
of detection and tracking in Table 11. The results show that
our cyclic refiner significantly improves the baseline detec-
tor for 2.8% mAP and 2.6% NDS ( 3© v.s. 1©), proving the
effectiveness of our design for the detection task. Follow-
ing the tracking-by-detection paradigm, our OAA surpasses
the baseline tracker (i.e.,BEVFormer-S + SimpleTrack Pang
et al. (2021)) for 6.3% AMOTA and 0.2 AMOTP ( 2© v.s.
1©). This evidences the robustness of our OAA in complex
driving scenarios.Notably, themodel combining ourCycer-S
and OAA ( 4©) achieves better tracking performance, proving
that better detectors usually contribute to stronger tracking
capability.

4.4.6 Object-Aware Strategy Between Cycer and Ocean

The proposed cyclic refiner exploits the predictions of each
frame to filter target-irrelevant distractors in the learned fea-

Table 13 Evaluating different cases with proposed object-aware asso-
ciation on nuScenes tracking val set: (a) small objects matching
with image embeddings, (b) occluded objects with BEV embed-
dings, (c) robust tracking with head embeddings, (d) enhanced IoU
matching with buffering strategy, and (e) dense objects with cascaded
scale-aware matching. The baseline tracker is CycBEVFormer-Small.
“MCimg”, “MCbev”, “MChead” indicate multi-clue matching with
image/BEV/head embeddings. “Buff” and “Cascade” denote buffering
strategy and cascaded matching. “MT” and “IDS” mean the number of
mostly tracked trajectories and identity switches, respectively

(a)
Settings AMOTA↑ AMOTP↓
w/o. MCimg 0.287 1.455

w/. MCimg 0.346 1.244

(b)
Settings AMOTA↑ AMOTP↓
w/o. MCbev 0.249 1.406

w/. MCbev 0.291 1.286

(c)
Settings MT↑ IDS↓
w/o. MChead 2603 10,428

w/. MChead 2987 8911

(d)
Settings AMOTA↑ AMOTP↓
w/o. Buff 0.384 1.189

w/. Buff 0.397 1.150

(e)
Settings AMOTA↑ AMOTP↓
w/o. Cascade 0.324 1.312

w/. Cascade 0.394 1.177

tures for object-aware learning. Similarly, Ocean Zhang et al.
(2020) in 2D object tracking also adopts the predicted box
as the prior proposal, which extracts corresponding ROI
features for classification. We then compare the two object-
aware strategies based on BEVFormer-Small. Specifically,
we collect ecat (see Sec. 3.1) as the object-aware ROI feature
in the Ocean implementation. The results in Table 12 show
that the strategy in Ocean degrades the performance for 0.3%
mAP and 9.3%NDS respectively ( 2© v.s. 1©). In contrast, our
cyclic refiner significantly improves the baseline for 2.8%
mAP and 2.6% NDS respectively ( 3© v.s. 1©). The reason
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Fig. 7 Visualization of association with multi-clue matching, buffering strategy and cascaded scale-aware matching. The multiple clues include
image/BEV/head embeddings

Fig. 8 Visualization of the
object-aware masks in the
multi-view images along time
stamps (four rows of each frame
represent “FRONT_LEFT”,
“FRONT”, “BACK_LEFT” and
“BACK” cameras respectively).
The last three columns
demonstrate the focus areas of
the masks in different scale
levels (i.e., large, mid and small,
respectively). The objects are
marked with colored 3D boxes
in the first column
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Fig. 9 Visualization of the
object-aware masks in the
bird’s-eye-views along time
stamps. The last three columns
demonstrate the focus areas of
the masks in different scale
levels (i.e., large, mid and small,
respectively). The objects are
marked with colored boxes in
the first row (Color figure
online)

lies in the diversified distractors and variant object sizes in
complex driving scenarios compared with that in 2D object
tracking. Asmentioned before, the distractors require careful
discrimination (e.g., mask prediction in our cyclic refiner).
Yet, the Ocean strategy directly fuses the ROI features of the
predictions without distinguishing the background clutters,
leading to inaccurate results. Besides, the variant object sizes
would also distract the extraction of target information, e.g.,
a large box prediction for a small object. We then design
the scale level to encode the scale information into the fil-
ter mask, which customs the spatial modeling size for each
object. These demonstrate the superiority of our object-aware
strategy in cyclic refiner.

4.4.7 Mechanism of Object-aware Association

We explore the working mechanism of the proposed multi-
clue matching (MC), buffering strategy (Buff) and cascaded
scale-aware matching (Cascade) with qualitative and quanti-
tative analyses, as shown inFig. 7 andTable 13. (a)Matching
with image embeddings MCimg . For small objects that are
32×32 pixels or less (we follow the setting of COCO), it’s
difficult to acquire sufficient appearance clues from BEV
features and motion information of minimal IoU between
frames (see “CAM_FRONT” of the left case in Fig. 7). In
contrast, the imageROI features (i.e., image embeddings) are
more informative under these circumstances. We prove our
claim in Table 13a), which shows that the image embeddings
impressively improve the baseline for 5.9% AMOTA and

0.211 AMOTP on small objects. (b) Matching with BEV
embeddingsMCbev . Compared with 2Dmulti-view images,
BEV provides a more general and clear 3D object descrip-
tion. When the objects are partially occluded in the images
(e.g., the half car in “CAM_BACK_LEFT” of the left case
in Fig. 7), BEV features can provide more robust 3D appear-
ance and shape clues for association. We prove this claim by
exploring the influence of MCbev on the occluded objects
(i.e., visual levels ≤ 3 in nuScenes). In specific, Table 13b)
shows that the BEV embeddings help to improve the track-
ing performance for 4.2% AMOTA and 0.12 AMOTP. (c)
Matching with head embeddings MChead . As the input
features for classification and regression, the head embed-
dings contain more discriminative information regardless of
the observation view compared with the image/BEV embed-
dings. This helps to improve the robustness of tracking.
For the silver car in the right case of Fig. 7 that shifts
from “CAM_FRONT_LEFT” at t to “CAM_BACK_LEFT”
at t + 1, it is capable of accurately associating the tar-
get with the head embeddings. The results in Table 13c)
show that MChead helps to track extra 384 trajectories and
reduce 1517 ID switches, evidencing our explanation. (d)
Matching with buffering strategy. As mentioned before,
we propose the buffering strategy to ensure reasonable box
IoUs in BEV space, since the coverage scale of each box pre-
diction in BEV plane is smaller than that in image space. The
cases in “CAM_FRONT” of Fig. 7 illustrate the buffered 3D
boxes help to generate accurate matches. Table 13d) shows
that the proposed strategy generally improves the track-
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ing performance of all objects for 1.3% AMOTA, proving
its effectiveness. (e) Matching with cascaded scale-aware
strategy. Large objects are more likely to cover nearby small
objects in BEV space, which may cause false matches and
track fragmentation (e.g., the white car in the right case of
Fig. 7). We propose Cascade to perform separate associa-
tions among objects with different scale levels. We evaluate
the tracking performance on the objects that have a near tar-
get neighbor within 2m. As shown in Table 13e), our cascade
design brings performance gains of 7.0%AMOTA and 0.135
AMOTP.

4.4.8 Object-Aware Perception by Cyclic Refiner

The object-aware perception ability is the purpose of our
designed “backward refinement” in the proposed cyclic
refiner. It aims at increasing the responses of target regions
andfiltering distractors.Wevisualize the generatedmasks for
refining multi-view image/BEV features in Fig. 8 and Fig. 9,
respectively. The results show that the 2D target areas are
captured and highlighted by the predicted masks of different
scale levels, especially in the “FRONT”, “FRONT_LEFT”
and “BACK” camera images. The large-scale masks usually
cover target-around areas to extract discriminative context
messages, while the mid-scale and small-scale masks are
adept at modeling fine-grained target information. Notably,
fewmasks in the first frame are interfered by the background
areas (e.g., the “Mid-obj Mask”) for not acquiring object-
aware temporal messages. The misclassification is improved
in the second frame by our Cyclic Refiner, demonstrating its
effectiveness.Comparedwith the 2D images, the built BEV is
highly abstract anddetermines the accuracy and robustness of
final predictions. As shown in Fig. 9, the object-aware masks
for refining BEV embed almost cover all the target areas,
which are delivered into different scale levels to refine the
learned representations. Similar to the image, the masks of
the first frame cannot enjoy the object-aware temporal infor-
mation and divert part focuses on the target-irrelevant areas.
The distraction is relieved in later frames by exploiting the
prior object-aware knowledge, which could help to well per-
ceive and locate the objects. This evidences the necessity of
solving the pollution of temporal fusion by target-irrelevant
distractors and the effectiveness of our “backward refine-
ment” for object-aware representation learning.

4.4.9 Background Clutter Suppression by the Cyclic Refiner

As mentioned, error accumulation is an inevitable problem
in temporal fusion, but it is usually unconsciously ignored by
recent works. Our cyclic refiner is indeed designed to relieve
the temporal error accumulation caused by false positives
(FPs) and background clutters (see Fig. 1). This is clearly
different from previous temporal methods, e.g., our baseline

BEVFormer, which directly fuses features from the previous
frames. In particular, we alleviate this issue by exploiting the
object-aware mask prediction in cyclic refiner to suppress
possible FPs, as shown in Fig. 10. The visualization illus-
trates thatmost FPs in the top 300 predictions from900 object
queries are suppressed by the predictedmask, which prevents
polluting future features in temporal fusion. Notably, there
are some hard examples of high scores mistakenly classified
as object regions (e.g., the false pedestrians in mid/small-obj
masks of Frame1) that are causedby the lack of effective tem-
poral clues in the first frame. Then for the next frame,with the
refined historical features that even contain several FP areas,
our cyclic refiner is capable of collecting sufficient discrim-
inative information to suppress the hard FPs (see Frame 2 in
Fig. 10). This demonstrates the effectiveness of our cyclic
refiner for relieving temporal error accumulation.

4.4.10 Object-Aware Temporal Learning

With the proposed cyclic pipeline, the refined features by
“backward refinement” are forwarded to the next frame,
which benefits the representation learning of future frames.
To verify the effectiveness of temporal learning, we first visu-
alize the sampling points with top 100 attention scores in the
view-transformer (see BEVFormer Li et al. (2022c) for more
details), as shown in Fig. 11. Compared with the baseline
BEVFormer (the second row), our cyclic refiner (the third
row) could exploit the refined target information of the last
frame and force the attention to more accurately concentrate
on the target-relevant areas. Notably, the sampling points are
more and more centralized as time goes by, since the efficacy
of our object-aware learning will gradually accumulate after
longer temporal fusion. The sampling points with top 100
attention scores for the BEV feature in the task head are pre-
sented in Fig. 12. Compared with the information-intensive
2D images, the objects in BEV are relatively sparse, which
raises more challenges to locate the target area and learn
an object-aware representation. The results show that our
sampling points (the third row) with the proposed “back-
ward refinement” are more focused on target-relevant areas,
in comparison with the baseline (the second row). Benefit-
ing from the cyclic pipeline which constantly updates and
refines the object-aware temporal information, our method
could generate more centralized sampling on the targets in
the later frames, evidencing the effectiveness.

4.4.11 Visualization of Detection and Tracking

Fig. 13 visualizes the detection results of the baseline and
our model. By exploiting the refined object-aware repre-
sentation in Frame 7, our method can transfer the prior
knowledge to future frames and successfully predict the loca-
tions of occluded objects in Frame 8. In contrast, BEVFormer
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Fig. 10 Visualization of background clutter suppression by mask prediction along time stamps. For the total 900 predictions of each frame, we
select the ones with the top 300 confidence scores for the cyclic refiner

Fig. 11 Visualization of the feature sampling points in the “FRONT” and “BACK” cameras. From left to right, the points with the top 100 attention
scores are highlighted in the frames of different time stamps. Compared with the baseline method, our CycBEVFormer can concentrate on target
regions
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Fig. 12 Visualization of the sampling points in the bird’s-eye-views.
From left to right, the points with the top 100 attention scores are high-
lighted in the BEVs of different time stamps. Compared to the baseline
BEVFormer (the second row), our CycBEVFormer could exploit the

object-aware temporal information to enhance the target-perception
ability in representation learning (the third row). The objects aremarked
with colored boxes in the first row (Color figure online)

Fig. 13 Qualitative comparison
between our CycBEVFormer
(red) and the baseline method Li
et al. (2022c) (blue) on detection
task. Results show that our
model achieves better recall
after object-aware temporal
fusion, especially in the cases
that are not addressed by single
frame detection (e.g., occlusion)
(Color figure online)
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Fig. 14 Qualitative comparison between our method (bottom) and the
baseline BEVFormer Li et al. (2022c) (top) on tracking task.We plot the
box of each tracking object in both multi-view cameras and BEV, which
is marked with the color corresponding to the identical tracking id. The

comparison shows that our CycBEVFormer could perform robust track-
ing under complex scenarios (e.g., varied object sizes, occlusion and
similar interferences) (Color figure online)

directly fuses features from the previous frame without fil-
tering the distractors, which decreases the effectiveness of
temporal learning and eventually causes false positives. This
further proves the effectiveness of the proposed object-aware
temporal learning framework in enhancing feature quality.
Figure 14 shows the tracking results between our CycBEV-
Former and the baseline. Compared with the detection task,

tracking in complex driving scenarios is more sensitive to
distractors, which may lead to false matches and increased
fragmentations. Therefore, suppressing interferences with
object-aware information is necessary to perform accurate
and robust tracking. By exploiting the refined object-aware
representations and assigned scale levels in cyclic refiner, our
method can match each object with the multiple appearance
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clues and scale-aware buffering strategy, which successfully
maintains the identical tracking id under deformation, occlu-
sion and interference with similar objects (the bottom row).
In contrast, BEVFormer directly fuses features from the pre-
vious frame containing target-irrelevant distractors, which
decreases the effectiveness of temporal learning and eventu-
ally causes tracking loss and id switches (the top row). This
further proves the effectiveness of the proposed cyclic tempo-
ral learning framework and tailored object-aware association
for multi-view 3D tracking.

4.4.12 Cyclic Refiner for Small Targets

Small objects are common in complex driving scenarios,
which are hardly captured for the relatively small sizes in
BEV space. One may wonder how our cyclic refiner mod-
els the features of small objects on the BEV plane of low
resolution. Our cyclic refiner improves the recall of small
targets from three aspects: (1) Multiple feature sources. As
mentioned in Sec. 3.1, we collect object information from
image/BEV features and head embeddings. For the small
targets that contain minimal BEV features, the object infor-
mation could be supplemented with the corresponding image
features of more pixels. Besides, the compact head embed-
dings, which are responsible for object classification and
regression, also provide target-relevant messages. With the
three feature sources, our cyclic refiner can collect sufficient
clues of small targets for object-aware temporal learning.
(2) Adaptive scale estimation. For each object, we assign
a scale level to determine the spatial modeling scope, which
contributes to extracting features of small targets more effec-
tively. Besides, the scale level also controls the kernel size
of DCNs to model the masked features, further improving
the effectiveness of feature sampling for small objects. (3)
Temporal fusion.After object-awaremodeling by our cyclic
refiner, the refined features are fed into the next frame for
temporal fusion. The contained object information guides
to generate sampling points on target areas. Besides, Fig. 9
shows that the surrounding background clutters of small tar-
gets can be effectively suppressed by the predicted small-obj
masks, further benefiting detection of small objects.

5 Conclusion

In this work, we aim to build a unified BEV detection and
tracking framework by learning object-aware representa-
tions. The essence is to backward the information in model
predictions to refine the afore-learned image and BEV fea-
tures for temporal fusion. Tailored to the proposed cyclic
learning pipeline, we design the object-aware association
strategy to boost 3D tracking. Experimental results show
that our method achieves consistent performance gains over

different baselines on both detection and tracking tasks.
Detection is the basic perception task in autonomous driv-
ing. Tracking is closer to downstream tasks, i.e., planning
and control. We hope our work can drive more interest in the
research of designing unified and effective BEV detection
and tracking framework.
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