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Abstract— Recent advancements in visual object tracking
have markedly improved the capabilities of unmanned aerial
vehicle (UAV) tracking, which is a critical component in real-
world robotics applications. While the integration of hierar-
chical lightweight networks has become a prevalent strategy
for enhancing efficiency in UAV tracking, it often results in a
significant drop in network capacity, which further exacerbates
challenges in UAV scenarios, such as frequent occlusions and
extreme changes in viewing angles. To address these issues, we
introduce a novel family of UAV trackers, termed CGTrack,
which combines explicit and implicit techniques to expand
network capacity within a coarse-to-fine framework. Specifi-
cally, we first introduce a Hierarchical Feature Cascade (HFC)
module that leverages the spirit of feature reuse to increase
network capacity by integrating the deep semantic cues with
the rich spatial information, incurring minimal computational
costs while enhancing feature representation. Based on this, we
design a novel Lightweight Gated Center Head (LGCH) that
utilizes gating mechanisms to decouple target-oriented coordi-
nates from previously expanded features, which contain dense
local discriminative information. Extensive experiments on
three challenging UAV tracking benchmarks demonstrate that
CGTrack achieves state-of-the-art performance while running
fast. Code will be available at https://github.com/Nightwatch-
Fox11/CGTrack.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) commonly refer to
drones remotely operated by a human operator without
any pilot on board. The rapid development of UAVs has
boosted numerous real-world applications, e.g., logistic and
product deliveries [1], UAV-assisted IoT applications [2], and
robotic automation [3]. Despite the remarkable progress in
visual object tracking, achieving efficient and accurate UAV
tracking remains fraught with significant challenges, such as
frequent scale changes, extreme viewing angles, and severe
occlusions. These issues are particularly pronounced in the
context of fast-moving drones. Therefore, it is crucial to
develop more robust and efficient network designs, especially
for edge devices with limited power resources.

In general, the majority of UAV trackers can be cat-
egorized into two types: discriminative correlation filters
(DCF)-based trackers [4]–[9] or deep learning (DL)-based
trackers [10]–[16]. Despite the superior efficiency brought
by Fourier transformation, the accuracy of DCF-based track-
ers has fallen far behind that of the DL-based trackers.
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Fig. 1. Comparison of success rate and precision between CGTrack
and other 13 state-of-the-art (SOTA) trackers on the authoritative
UAV123 benchmark [34]. CGTrack achieves SOTA performance in
both precision and success rate, surpassing the average performance
of 13 trackers by 6.6% and 8.4% respectively. Best viewed in color
for all figures in this paper.

Among modern DL-based trackers, those based on Siamese
networks [10]–[12], [17]–[20] are the most prevalent. They
employ the strategy of “divide-and-conquer”, where the tem-
plate and the search region features are extracted separately
before relation modeling. However, as described in [15], the
features extracted by Siamese networks lack essential target-
oriented discriminative information, resulting in significant
performance degradation in UAV scenarios, particularly dur-
ing high-speed movement. Recently, Transformer [21] has
played a pivotal role in the field of UAV tracking [22]–[24]
due to its superior capacity of modeling global relationships.
Moreover, with the power of pre-trained Vision Transformer
(ViT) models [25]–[29], one-stream frameworks [15], [30]–
[32] exhibit superior performance in both accuracy and effi-
ciency when compared to Siamese-based trackers. However,
Transformer-based trackers are burdened by high compu-
tational costs brought by ViTs and often neglect critical
local information [33], leading to failures in extreme UAV
scenarios.

In this work, we address the aforementioned challenges by
introducing a lightweight, hierarchical one-stream tracking
framework. By adopting a lightweight hierarchical ViT as
backbone, we obtain hierarchical features that preserve rich
global contextual information. To effectively enhance net-
work capacity with these hierarchical features, we propose
a Hierarchical Feature Cascade (HFC) module, inspired by
DenseNet [35], which highlights the strength of feature
reuse. However, unlike the original DenseNet [35], our HFC
module simplifies dense connections into a cascade structure
by scaling multi-level features to a uniform size and later
concatenating them. This approach allows us to obtain a
feature map containing both deep semantic information and
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shallow detail information without additional parameters or
FLOPs. The HFC module explicitly increases the network
width (i.e., channel number) to provide rich contextual
information for subsequent fine-grained discriminative fea-
ture extraction. The enriched feature map contains both
discriminative local details and global context which are
particularly crucial in resource-constrained challenging UAV
scenarios. Additionally, we introduce a Residual Squeeze-
and-Excitation (SE) module to apply coarse-grained gating
on the feature maps after each concatenation, improving
gradient flow through its residual design.

To fully leverage the feature map generated by the HFC
module, we improve the center head design in modern
trackers [15], [36]–[38] by proposing the Lightweight Gated
Center Head. Inspired by [39], we replace the basic Conv-
BN-ReLU (CBR) block with an Efficient Gating (EG) block.
The EG block first maps the features into a high-dimensional
nonlinear feature space, where gating is performed subse-
quently via the Hadamard product. The gating mechanisms
have shown superior capability in enhancing local fine-
grained details in the field of image inpainting [40]. In
light of this, we employ EG block to further mine local
discriminative information which is critical for addressing
the challenges inherent in UAV scenarios.

In summary, our contributions in this paper are as follows:
• We propose CGTrack, a family of UAV tracking ar-

chitecture aiming at combining global context provided
by lightweight ViT with mined local discriminative
details from hierarchical features to achieve robust UAV
tracking.

• Leveraging the art of feature reuse, a novel HFC module
is presented whereby hierarchical features are aggre-
gated and gated in an efficient cascade pipeline.

• An original tracking head LGCH is introduced. It fur-
ther utilizes the HFC-expanded features by mapping the
features to a higher-dimensional nonlinear feature space,
whereby gating is performed through the Hadamard
product.

• We perform comprehensive evaluations on three au-
thoritative UAV tracking benchmarks demonstrating the
state-of-the-art performance of CGTrack.

II. RELATED WORKS

A. Visual Object Tracking for UAV.
Despite the high efficiency of DCF-based trackers [4]–

[9], they have been largely supplanted by Siamese-based
trackers [10]–[16] in UAV tracking due to their relatively
low accuracy. More recently, some studies have attempted to
incorporate Transformer [21] into Siamese-based UAV track-
ing pipeline [22]–[24] to enhance the interaction between
extracted template and search region features. However, these
methods still adopt the two-stream framework, leading to
insufficient information interaction during feature extraction.
In this work, we adapt a lightweight hierarchical ViT into the
one-stream UAV tracking pipeline, establishing an optimal
equilibrium between computational demands and tracking
accuracy

+ +
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(a) Addition-Based Fusion

(b) Transformer-Based Fusion

(c) Ours: Cascade Gating Fusion

Fig. 2. Comparison of the popular hierarchical feature fusion
methods for UAV tracking. (a) Addition-Based Fusion: simply adds
all the feature maps up. (b) Transformer-Based Fusion: employs
Transformer layers or multi-head attention modules for feature
fusion. (c) Cascade Gating Fusion: concatenates adjacent feature
maps and performs gating subsequently in a cascade architecture.

B. Hierarchical UAV Trackers.

In UAV scenarios, most existing trackers adopt lightweight
image classification networks as backbones for better com-
putational efficiency [10], [22]–[24], [41]–[43]. However, the
high-stride downsampling in these networks often leads to
a loss of critical information. To mitigate this, hierarchical
UAV trackers attempt to leverage multi-level feature maps
generated at different stages of the lightweight backbones.
For instance, SiamAPN++ [41] employs an attention mecha-
nism to adaptively fuse multi-level features, while HiFT [22]
stacks Transformer layers to incorporate multi-scales feature
maps. These methods, as shown in Fig. 2(b), are burdened
with heavy relation modeling. Beyond UAV-specific trackers,
HiT [32] employs simple addition for hierarchical feature
aggregation, also depicted in Fig. 2(a). This approach, despite
its simplicity, ignores the diverse variance of hierarchical
feature maps, resulting in severe information loss. As shown
in Fig. 2(c), unlike the aforementioned methods, we propose
a novel cascade gating structure that combines gating mech-
anism and feature reuse to expand network capacity with
minor computational costs.

C. Gating Mechenism.

Recent studies have demonstrated the utility of the gating
mechanism across numerous computer vision tasks [39],
[40], [44], [45]. To illustrate, SENet [44] introduces an effi-
cient channel-wise attention mechanism through lightweight
gating. DeepFill v2 [40] incorporates the gating mechanism
into the convolution to better distinguish between different
pixels in an image. Moreover, StarNet [39] further explains
the reason why numerous efficient network designs adopt
gating mechanisms [44], [45]: the Hadamard product has
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Fig. 3. Overview of the proposed CGTrack, which comprises three main components: a lightweight hierarchical backbone, an HFC module,
and a Lightweight Gated Center Head.

the ability to map the features into higher and nonlinear
dimensions, but operates in low-dimensional space. In this
work, we integrate the coarse-gained gating and fine-grained
gating into the tracking framework respectively to mine local
discriminative details with efficiency.

III. PROPOSED METHOD

This section systematically elaborates on our proposed
CGTrack framework. We first establish a conceptual
schematic of the architecture, followed by the detailed com-
ponent introduction, including a lightweight ViT backbone,
the proposed Hierarchical Feature Cascade module, and
Lightweight Gated Center Head. In the final part of this
section, we introduce the training objective.

A. Overview

As depicted in Fig. 3, CGTrack is a one-stream track-
ing framework incorporating three core components: a
lightweight ViT backbone, the proposed HFC module, and
LGCH. Like most one-stream trackers [15], [16], [32], [46],
CGTrack takes a pair of images as input and then jointly
performs feature extraction and relational modeling across
different network stages. The model progressively generates
hierarchical feature maps with varying spatial resolutions
from each ViT stage. Besides the backbone is a coarse-to-
fine architecture consisting of our proposed HFC module and
LGCH: The feature sequence is firstly fed into the HFC
module for efficient feature augmentation and preliminary
gating; Then, LGCH takes the expanded feature map as input
and performs final purification to obtain tracking result.

B. LeViT Backbone

Inspired by HiT [32], we adopt LeViT [47] as the back-
bone of CGTrack and adapt it into the tracking frame-
work. For clarification, we denote the input template image
and search region image as Z ∈ R3×Hz×Wz and X ∈
R3×Hx×Wx respectively. They are first downsampled by a
factor of 16 through patch embedding resulting in Zp ∈
RC×Hz

16 ×Wz
16 and Xp ∈ RC×Hx

16 ×Wx
16 . Then we flatten and

concatenate Zp and Xp in the spatial dimension and feed
them into the following ViT stages. The transformer part of
LeViT comprises three stages, and each stage consists of Li
blocks, i.e., L1=4, L2=4, L3=4. Each block has a Multi-
Head Attention and an MLP in the residual form. LeViT
leverages the Shrink Attention modules to downsample fea-
ture maps at a scale of 4 between stages, producing three
feature maps with multiple resolutions. As is common in
one-stream trackers, we extract the search region part of the
output from each stage and re-interpret these tokens to a 2D
spatial correlation map. Finally, we obtain a sequence in-
cluding three correlation maps with distinct size, i.e., M1 ∈
RHs×Ws×Cs , M2 ∈ RHm×Wm×Cm , M3 ∈ RHl×Wl×Cl ,
where Cs = 384, Cm = 512, Cl = 768. In addition, a
similar position encoding design, analogous to Dual-image
Position Encoding in HiT is used in our CGTrack, to better
adapt LeViT for the tracking task. Further details regarding
the backbone network of CGTrack can be found in LeViT
and HiT.
Remark 1: Attributing to the lightweight hierarchical ViT, we
obtain a sequence of correlation maps preserving rich global
context information in both search region and template with



minor costs. This highly parallelized one-stream structure is
able to handle multiple UAV scenarios with flexible variants.

C. Hierarchical Feature Cascade Module

Inspired by DenseNet [35], we propose a Hierarchical
Feature Cascade module that progressively integrates multi-
stage backbone features via concatenation operations. By
applying gating to the concatenated feature maps, the HFC
module enhances the critical local discriminative details.
Different from the original dense connection in DenseNet,
the HFC module simplifies it by only keeping one cascade
path between adjacent feature maps, which significantly
reduces memory usage and achieves promising efficiency.
As illustrated in Fig. 3, for hierarchical 3D correlation maps
denoted as Mi, i ∈ {1, 2, 3}, we first upsample M1 and
concatenate it and M2 together along the channel dimension,
which can be written as

X = Concat(M2,Upsample(M1)) (1)

where X is the intermediate result of the HFC module. In
view of the diverse variance of the concatenated features, we
adapt the original Squeeze-and-Excitation block [44] into the
residual form and propose Residual SE, which efficiently
applies channel re-scaling and preliminary gating to the
concatenated feature map through Hadamard product. The
entire process of Residual SE can be formulated as

zc =
1

H ×W

H∑
i=1

W∑
j=1

xc,i,j (2)

sc = σ(W2 · ReLU(W1 · zc)), (3)
x̂c,i,j = xc,i,j · sc, (4)

X̂ = X +X ⊙ S (5)

where xc,i,j represents the input feature at channel c and
spatial location (i, j). zc is the channel descriptor obtained
via global average pooling. W1 and W2 are the weights of
the fully connected layers used in the excitation step. σ is the
sigmoid activation function. X and X̂ are the overall input
and output feature maps, respectively. ⊙ denotes Hadamard
product. Then, we apply the same operation to the output
of the previous step to obtain the final feature. The entire
process can be mathematically formulated as:

O = ResidualSE(Concat(M2,Upsample(M1))) (6)
Y = ResidualSE(Concat(M3,Upsample(O))) (7)

Remark 2: Compared to additive operations, feature con-
catenations preserve all information and improve gradient
flow, thereby accelerating network convergence. Each con-
catenation operation yields a higher-dimensional feature map
explicitly. By applying the Residual SE to the concatenated
feature map, we enhance local discriminative details through
gating. This amplification is particularly crucial in chal-
lenging UAV scenarios, such as tracking small objects or
handling sudden appearance changes.
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Fig. 4. Detailed architectures of LGCH. The left part illustrates the
overall workflow of LGCH. The right one shows the structure of
the EG block.

D. Lightweight Gated Center Head

From the HFC module, we obtain features enriched with
contextual information. Building on this, we propose the
Efficient Gating block to extract fine-grained discriminative
details from the expanded features. As illustrated in Fig. 4,
the concatenated feature map is first downsampled by a 1 × 1
convolution into a channel size of 256 for memory efficiency.
The feature map is then fed into three branches, each
containing four EG blocks followed by a 1 × 1 convolution.
Consistent with [15], the output of three branches is a
classification score map, a local offset map, and a bounding
box size map, respectively. The detailed structure of the
EG block is depicted on the right side of Fig. 4. The core
design of the EG block involves two 1 × 1 convolutions
that map the input into higher-dimensional, non-linear feature
space. Among these, one branch incorporates an activation
function, forming the gate branch while the other serves as
the context branch. Subsequently, the Hadamard product is
performed between gate and context. The entire process of
the EG block can be written as:

O = BN(DW7×7(X)) (8)
X1 = Conv1×1(O) (9)
X2 = Conv1×1(O) (10)
P = ReLU6(X1)⊙X2 (11)
Y = BN(Conv1×1(DW7×7(P ))) (12)

where X1 and X2 are the gate and context branch, respec-
tively.
Remark 3: Unlike commonly used CBR blocks, the proposed
EG blocks exhibit enhanced capability in extracting fine-
grained features. Similar to the HFC module, EG blocks
first explicitly map features to higher dimensions before per-
forming gating, effectively decoupling discriminative, target-
oriented information in the correlation map. Furthermore,
as described in [39], the Hadamard product implicitly
transforms previously expanded features into exceptionally
high and nonlinear dimensions while maintaining operations
in a low-dimensional space. Notably, our proposed EG block
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Fig. 5. Overall performance of CGTrack and prevailing SOTA trackers on UAV123 [34] (the first column), UAV123@10fp [34] (the
second column), and UAVTrack112 [48] (the third column) benchmarks. CGTrack achieves SOTA performance across all benchmarks.

has even fewer FLOPs and parameters than a CBR block,
highlighting its potential for applications on edge devices.

E. Training objective

In the training phase, we employ weighted focal loss [49]
in the classification task, while utilizing a combination of ℓ1
loss and generalized GIoU loss [50] for the localization task.
The overall loss function is

L = Lfocal + λGLGIoU + λlLl, (13)

where λG = 2 and λl = 5 are the regularization parameters
following [15].

IV. EXPERIMENTS

A. Implementation Details

The proposed CGTrack is implemented in Python 3.8 with
PyTorch 1.10.0, trained on four NVIDIA RTX 3090 GPUs.
We employ the train-splits of GOT-10k [51] (excluding 1k
sequences as convention), LaSOT [52], COCO2017 [53], and
TrackingNet [54] for training. Common data augmentations
including horizontal flipping and brightness jittering are
applied during training. The network processes 128×128
template and 256×256 search images in each training batch
of 128 samples. We adopt AdamW [55], with the weight
decay of 1e-4 as the optimizer. The initial learning rate of
CGTrack is set to 4e-5 which decays by 10% during the final
20% training epochs.

B. Overall Performance on UAV Tracking Benchmarks

In this subsection, our CGTrack is comprehensively com-
pared with 13 SOTA trackers including TCTrack [42],
SGDViT [23], FDNT [56], HiFT [22], SiamAPN [48],
LPAT [57], DeconNet [58], SiamTPN [59], SiamDW [60],
TCTrack++ [43], SiamAPN++ [41], SE-SiamFC [61],

Ocean [62] on three public authoritative aerial tracking
benchmarks.

UAV123. UAV123 [34] is a comprehensive aerial video
benchmark dataset containing 123 HD sequences with over
112,000 frames captured from low-altitude aerial platforms.
This benchmark includes various challenging scenarios such
as rapid target motion and scale variation, providing a
comprehensive platform to thoroughly evaluate CGTrack’s
performance in aerial tracking. As depicted in Fig. 5, CG-
Track demonstrates SOTA tracking performance with 88.0%
in Precision and 67.2% in Success score.

UAV123@10fps. UAV123@10fps [34] is derived by down-
sampling the original 30fps version, which leads to more
pronounced motion between consecutive frames. This in-
creased motion poses a challenge to trackers in more ef-
fectively leveraging inter-frame continuity information for
robust aerial tracking. As shown in Fig. 5, CGTrack con-
sistently achieves SOTA performance, with the highest Pre-
cision (83.8%) and Success score (66.1%).

UAVTrack112. UAVTrack112 [48] is a challenging aerial
benchmark that collects 112 real-world sequences including
low illumination scenarios in the dark time. As illustrated in
Fig. 5, CGTrack sets a new SOTA Success score of 64.9%
and Precision score of 80.6%.

C. Attribute-Based Comparison

To further evaluate the robustness of CGTrack against
diverse UAV-specific challenges, we conduct exhaustive
attribute-based comparisons with other 5 SOTA UAV track-
ers. As depicted in Fig. 6, our CGTrack achieves SOTA
performance in all attributes. The promising results demon-
strate that CGTrack is capable of aggregating the mined local
discriminative details and global context to mitigate various
challenges in UAV scenarios.
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Fig. 6. Success scores of different attributes among top 6 SOTA
UAV trackers. CGTrack significantly outperforms other trackers in
typical UAV attributes.

# Method Precision Params(M) MACs(G)

1 Addition-based Fusion 82.90 40.931 4.315
2 Concatenation-based Fusion(w/o Residual SE) 84.12 40.668 4.323
3 Concatenation-based Fusion + Residual SE 86.24 41.219 4.324

TABLE I Ablation study of different fusion manners of CGTrack.
Gray color is employed to denote our final configuration.

# Method Params(M) MACs(G) FPS Precision

1 CGTrack-T 9.987 1.165 61.4 80.08
2 CGTrack-S 11.421 1.300 55.6 82.00
3 CGTrack-B 41.219 4.324 42.1 86.24

TABLE II Details and variants of our CGTrack model.

# Method Head Params(M) MACs(G) AUC

1 Plain CBR block 2.935 0.751 65.51
2 EG block-1x 1.425 0.364 63.64
3 EG block-2x 2.665 0.680 66.14
4 EG block-3x 3.904 0.996 65.31
4 EG block-4x 5.143 1.313 63.40

TABLE III Ablation study on different components and configura-
tions of the center head. Gray denotes our final configuration.

D. Ablation Study and Visualization

In this subsection, we present the ablation studies on
UAV123@10fps.

Hierarchical Feature Fusion Analysis. To verify the su-
periority of our fusion manner, we compare different hier-
archical feature fusion manners. As shown in Tab. I, the
original concatenation-based fusion (without gating) gains
a 1.22% improvement in Precision score. Furthermore, as
enumerated in Tab. I, Row 3, the cascade gating framework
exhibits a 3.34% increase in Precision score compared to
Row 2. The aforementioned results demonstrate the efficacy
of the designed HFC module in UAV tracking.

Variants Analysis. In Tab. II, we present multiple variants
of CGTrack with different backbone networks. Specifically,
we adopt LeViT-384 [47], LeViT-128, and LeViT-128S
for CGTrack-B, CGTrack-S, and CGTrack-T, respectively.

CGTrack (Ours) TCTrack++ SiamAPN++ SGDViT HiFT DeconNet

Fig. 7. Qualitative comparison of CGTrack with other trackers on
three representative sequences (wakeboard2 from UAV123@10fps,
and excavator, car4 from UAVTrack112). CGTrack achieves robust
performance under severe UAV-specific challenges.

Among these variants, CGTrack-T exhibits superior speed at
61.4 fps on an NVIDIA RTX 3090 GPU, while CGTrack-
B focuses on robustness, achieving an 86.24% Precision
score on UAV123@10fps. Notably, the CGTrack-S achieves
a more favorable balance between computational complexity
and tracking performance. The designed variants show strong
generalization across different application scenarios.

LGCH Analysis. This part analyzes the effectiveness of
LGCH and compares different feature upsampling ratios in
the EG block. As in Tab. III, LGCH outperforms the CBR-
based center head with even fewer parameters and FLOPs.
When setting the upsampling ratio to 2, the highest Success
score is achieved. The results indicate that a larger upsam-
pling ratio can cause overfitting, while a smaller upsampling
ratio may result in insufficient modeling capacity.

Qualitative Results. To intuitively demonstrate the tracking
performance in real-world scenarios, we visualize the track-
ing results in Fig. 7. The qualitative results across multiple
real-world challenging scenes demonstrate that our CGTrack
achieves superior robustness and accuracy, outperforming
all the other UAV trackers. For further visualization of our
method and comparison to other trackers, please kindly refer
to the accompanying video.

V. CONCLUSION

In this work, we introduce a novel family of lightweight
one-stream UAV trackers, dubbed CGTrack. CGTrack inte-
grates global contextual information with mined local dis-
criminative details to bridge the gap between lightweight
ViTs and robust UAV tracking. By leveraging the art of
feature reuse and gating mechanism, CGTrack significantly
expands network capacity to tackle challenges in UAV sce-
narios without additional computational overhead. Extensive
experiments demonstrate the superior real-world practicabil-
ity and state-of-the-art performance of CGTrack. Finally, we
hope this work could inspire and facilitate future research in
robust UAV tracking.
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