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Abstract. The effectiveness of Vision Transformer (ViT)-based feature
encoding network has been demonstrated in medical image analysis tasks.
However, the complexity growing quadratically with the token number
limits its application in dense prediction. To accelerate ViT, we pro-
pose an efficient and accurate token halting and reconstruction encoder
framework, termed HRViT, designed for precise medical image seman-
tic segmentation. Our approach is motivated by the observation that
background and internal tokens can be easily identified and halted in
early layers, while complex and ambiguous edge regions require deeper
computational processing for accurate segmentation. HRViT leverages
this insight by incorporating an edge-aware token halting module, which
dynamically identifies edge patches and halts non-edge tokens. The pre-
served edge tokens are propagated to deeper layers and further refined
through edge reinforcement. After encoding, all tokens are restored to
their original positions, and auxiliary supervision is also introduced to
strengthen the encoder’s representation power. We evaluate the seg-
mentation performance of our method using two public medical image
datasets and the experimental results show that our method achieves
promising performance compared with the state-of-the-art approaches.
Our code is released at https://github.com/guoyh6/hrvit.
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1 Introduction

Recent works have shown impressive results using Transformer [23] for medi-
cal image segmentation [18,21]. Vision Transformers (ViTs) series [7,1,8,10] have
gained recognition for their exceptional global dependency modeling capabil-
ities, and have outperformed convolutional neural networks in various tasks.
ViT divides an image into several patches and treats them as tokens. Due to
the quadratic growth of time complexity in the Transformer block with token
length, it becomes necessary to limit the number of patches based on large-scale
3D medical image processing tasks and device capabilities.

https://github.com/guoyh6/hrvit
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However, achieving accurate medical image segmentation necessitates the
utilization of high-resolution information from the images, which often requires a
substantial number of input tokens. Existing token reduction approaches mainly
prune less informative tokens [19,24,25] or merge related tokens [4,13,14,15] at
early Transformer layers, which is incompatible with dense prediction tasks. In
DToP [22], the segmentation quality of all tokens is evaluated at each stage,
and tokens with high confidence are pruned. However, in DToP, each token
outputs independently, resulting in inferior segmentation quality. SCD [27] is a
token sparsification model designed for medical image segmentation, where some
tokens are halted during the encoding process. However, the halting method
employed lacks explicit supervision, which can lead to suboptimal performance
as the model may become confused about which tokens should be preserved.

To address the aforementioned issues, in this paper, we introduce HRViT,
an efficient token Halting and Reconstruction ViT-based method for medical
imaging semantic segmentation. We propose a novel edge-aware halting module
in encoder layers that guides the sparsity of tokens. This module is built on the
observation of how background pixels and core regions of large objects naturally
achieve higher confidence scores through early-layer segmentation heads [22].
The inherent ambiguity of semantic edges in medical images complicates precise
segmentation, making it essential to preserve and propagate these regions. To-
kens corresponding to the background or interior of objects can be easily recog-
nized and halted in the early encoder layers. Identifying edge patches is simpler
than predicting pixel-level semantic categories. Additionally, we introduce an
edge reinforcement module to enhance the prediction reliability of selective crit-
ical edge tokens. After the encoding process, HRViT reassembles the full tokens
by restoring both the edge tokens and the halted intermediate tokens. We also
design an encoder auxiliary loss for restored tokens. Finally, all reconstructed
tokens are utilized as input for the subsequent segmentation decoders [10,27] to
compute the dense prediction results. Experiments show that HRViT achieves
significantly faster inference speeds than baselines, with up to 46% and 78%
improvement in FPS on two public benchmarks [12,2], while achieving state-of-
the-art segmentation quality.

2 Method

2.1 Overview

The ViT-based 3D segmentation model follows a typical encoder-decoder ar-
chitecture. The segmenter receives a cropping volume I ∈ RH×W×D×Cin ini-
tially divided into patches and flattened into a sequence of token embeddings
X ∈ RN×C , N = H

P × W
P × D

P (P is patch size). The encoder processes the resul-
tant tokens using L stacked Transformer block (TB) layers, while the decoder
performs dense semantic prediction on the encoded embeddings. As shown in
Fig. 1, our HRViT modifies the encoder component: an edge-aware token halt-
ing module, edge reinforcement, and a token reconstruction strategy.
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Fig. 1. Overview of the proposed HRViT for medical image segmentation. (b) Standard
Transformer block (TBI). (c) Transformer block with edge reinforcement (TBII).

2.2 Edge-Aware Halting Module

HRViT partitions the L-layer encoder into two phases. In the first phase (L1-
layer), we retain the conventional strategy of processing all tokens X ∈ RN×C .
In the second phase (L2-layer), we introduce an edge-aware token halting module
that dynamically selects a small subset of tokens Xkeep ∈ RM×C to propagate
forward. This selection is based on an edge-aware halting score, where the num-
ber of tokens M is significantly smaller than the total number of tokens N , i.e.,
M ≪ N . Therefore, it reduces the encoder’s computational complexity while
prioritizing semantically critical edge regions.

We employ a scoring network to determine which tokens should be halted.
This scoring network predicts the edge confidence S ∈ RN×1 of all tokens, which
is implemented using an MLP followed by a sigmoid activation. A pre-defined
threshold t is then applied to determine which tokens to halt. The binary halting
mask is obtained by applying a non-differentiable indicator function to edge con-
fidence. We adopt the straight-through estimator (STE) [3] strategy to handle
the non-differentiable thresholding function, treating it as an identity function
during the gradient backpropagation. To encourage the scoring network to out-
put desirable edge confidence S, we employ a cross-entropy (CE) loss function
that aligns the predictions with edge supervision, i.e., Ledge = CE(S,GTtoken).
The binary label of token GTtoken ∈ RN is labeled positive when its correspond-
ing patch region exists semantic inconsistency, indicating edge tokens.

2.3 Edge Reinforcement

The semantic categories of edge tokens are strongly connected to the surround-
ing area. To enhance the prediction reliability of selective critical tokens, we
retain halted tokens in subsequent encoder layers as semantic context providers.
As illustrated in Fig. 1 (c), our approach differs from standard self-attention
(Fig. 1 (b)) by incorporating a deformable cross-attention module [28] into each
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Transformer block during the second encoding phase. Following the conventional
self-attention operation, the selected tokens Xkeep are utilized as queries, while
the complete pre-halting token sequence XL1 provides the keys and values. This
design enables the selective tokens to adaptively sample and aggregate region
features of interest, leveraging the semantic context to enhance representation
learning. Mathematically, the encoding patterns can be described as follows:{

Xi = TBi
I(X

i−1), i ≤ L1

Xi
keep = TBi

II(X
i−1
keep, X

L1), i > L1
(1)

The additional computational cost is minimal, as the complexity of the de-
formable attention mechanism scales linearly with the number of queries M .

2.4 Token Reconstruction & Decoder

For the dense semantic segmentation task, we utilize a standard segmentation
decoder that processes a full-length token sequence. To meet this requirement,
we introduce a token reorganization module after the encoding phase. This
module restores the sparse edge tokens and the halted intermediate tokens to
their original positions in the initial sequence. Following the reconstruction,
a Transformer block is applied to the restored encoding tokens to fully inte-
grate the features from the two-stage encoding process, which can be written as:
Xenc = TBI(Restore(XL

keep, X
L1

halt)). The token reconstruction mechanism effec-
tively mitigates performance degradation caused by the missing blur edge token.
Our primary goal is to develop a ViT-based encoder acceleration framework that
operates independently of the decoder workflow. Consequently, HRViT leverages
existing segmentation decoders [10,26] to produce the final dense segmentation
results.

2.5 Optimization

In addition to the standard segmentation loss, we introduce two patch-level
auxiliary losses. The first is the edge loss, as described earlier, which is applied
to the scoring network. The second is an auxiliary CE loss, denoted as Laux,
applied to the restored encoding tokens. Each token is processed by an MLP head
to predict whether it belongs to an edge region or a specific semantic category.
The output dimension of the prediction is set to cls + 1, where cls represents
the number of semantic classes, and the additional dimension corresponds to the
edge category. The overall training loss is formulated as: L = Ledge+Laux+Lseg,
where Lseg consists of pixel-level CE loss and Dice loss. All loss weights are equal.

3 Experiment

3.1 Dataset

We evaluate HRViT on two publicly available 3D medical segmentation datasets.
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BTCV Multi-Organ Segmentation dataset (CT). The BTCV (Multi
Atlas Labeling Beyond The Cranial Vault) consists of 30 abdominal clinical CT
scans [12]. Following the previously reported works [5,6], we use 18 volumes for
training and the rest 12 volumes are used for testing. The average Dice Similarity
Coefficient (DSC) and average Hausdorff Distance (HD) are reported to evaluate
our method on 8 abdominal organs (aorta, gallbladder, spleen, left kidney, right
kidney, liver, pancreas, stomach).

Brain Tumor Segmentation (MRI) is a subtask of The Medical Segmen-
tation Decathlon [2]. The Brain Tumor Segmentation (BraTS) dataset provides
484 multi-modal multi-site (FLAIR, T1w, T1gd, T2w) MRI annotated cases.
Following SCD [27], we split the dataset into training, validation, and testing
sets in an 80%:15%:5% ratio.

3.2 Implementation details

In the experiments, we use a single NVIDIA A800 GPU with PyTorch and
MONAI frameworks. We adapt SCD [27] for data processing and optimization
strategy. For baseline comparisons, we select two representative ViT-based seg-
mentation models: UNETR and SegViT. The patch size is set to P = 8 and the
embedding channel is C = 768. The encoder consists of L = 12 Transformer
blocks, with the proposed edge-aware token halting module inserted after the
third block, i.e., L1 = 3 and L2 = 9. To further evaluate performance, we im-
plement a fixed-quantity token retention variant, referred to as HRViT-S, where
only the top-ρ tokens with the highest edge confidence are retained. Through
ablation studies, we determine that a scoring threshold to t = 0.75 and keeping
ratio ρ = 0.1 yield optimal performance for the dynamic and static operational
modes, respectively. During training, we randomly crop a fixed-size image patch
as the input. For inference, we employ a sliding window approach with a half-
window overlap to process the entire volume. The input size is set to 96×96×96
for the BTCV dataset and 128× 128× 128 for the BraTS dataset.

3.3 Main Results

In Table 1, we present the evaluation results on the BTCV dataset. Our method
not only accelerates ViT-based segmentation models but also achieves state-of-
the-art performance in both average Dice Similarity Coefficient (DSC) and Haus-
dorff Distance (HD) metrics. Compared to the baseline UNETR [10], HRViT
demonstrates a 2.79% improvement in DSC and a reduction of 5.69 mm in HD.
HRViT-S achieves a 2.47% increase in average DSC and a decrease of 2.60 mm
in HD. Applying the HRViT encoder variants to SegViT [26], a general-purpose
semantic segmentation framework, also yields consistent performance improve-
ments. Our approach shows more significant advancements in the HD evalua-
tion metric, indicating that our edge-aware token halting and edge reinforcement
modules contribute to improved edge predictions.

In Table 2, we evaluate the efficiency of our HRViT on the BTCV dataset.
We measure the efficiency of our network by profiling the encoder throughput,
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Table 1. Comparison with other methods on BTCV. The best and second-best results
are colored red and blue. Gallbladder: Gb; KL: Kidney (L); KR: Kidney (R).

Methods DSC↑ HD↓ Aorta Gb KL KR Liver Pancreas Spleen Stomach
V-Net [17] 68.81 - 75.34 51.87 77.10 80.75 87.84 40.05 80.56 56.98
DARR [9] 69.77 - 74.74 53.77 72.31 73.24 94.08 54.18 89.90 45.96

TransUNet [6] 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62
SwinUNet [5] 79.13 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60

SCD [27] 82.18 19.85 89.39 73.60 85.66 83.65 95.59 62.17 88.84 77.37
MetaUNETR [16] 82.10 - - - - - - - - -

nnU-Net Revisited [11] 85.04 - - - - - - - - -
SegViT [26] 79.63 10.99 82.69 66.67 82.02 79.57 96.06 58.06 91.75 78.21

HRViT-S+SegViT 80.47 9.82 84.21 66.90 81.33 80.09 95.45 63.37 90.85 79.54
HRViT+SegViT 80.35 9.20 83.05 68.21 82.12 78.37 95.98 63.44 90.61 79.63

UNETR [10] 80.74 17.38 88.93 67.71 84.30 83.81 95.74 58.82 89.36 75.46
HRViT-S+UNETR 83.21 14.78 89.39 70.84 85.58 84.83 95.36 66.29 92.53 79.32
HRViT+UNETR 83.53 11.69 89.11 73.84 85.75 83.48 95.59 68.75 89.87 80.54

Table 2. Segmentation efficiency of different methods on BTCV.

Methods DSC↑ HD↓ Encoder
Throughput(img/s) FPS(img/s) FLOPs(GMac)

UNETR [10] 80.74 17.38 51.26 34.68 273.45
SCD [27] 82.18 19.85 105.32 47.43 146.63

HRViT-S+UNETR 83.21 14.78 104.46 47.63 159.51
HRViT+UNETR 83.53 11.69 120.23 50.65 143.69

frames per second (FPS), and floating-point operations (FLOPs). HRViT is a dy-
namic network that allows for adjusting token numbers and computation based
on the inputs. We conduct tests on multiple inputs and calculate the average as
the final metric. Our approach achieves higher accuracy while significantly im-
proving inference efficiency on the BTCV dataset. Specifically, HRViT achieves
a 2.35× increase in encoder throughput and accelerates FPS from 34.68 images
per second (imgs/s) to 50.65 imgs/s, representing a 46% improvement compared
to the baseline.

Table 3. Segmentation accuracy and efficiency of different methods on BraTS.

Methods DSC↑ HD↓ Encoder
Throughput(img/s) FPS(img/s) FLOPs(GMac)

U-Net [20] 75.84 9.17 - - -
TransUNet [6] 73.24 11.74 - - -
UNETR [10] 77.68 7.96 15.69 11.66 824.38

SCD [27] 75.79 8.31 47.54 20.44 428.28
HRViT-S+UNETR 78.68 7.59 45.04 19.95 442.82
HRViT+UNETR 78.39 7.90 48.12 20.74 407.78

Table 3 provides qualitative brain tumor segmentation comparisons. UN-
ETR [10] outperforms both CNN and transformer-based approaches on the
BraTS dataset. Our HRViT-S further improves the average DSC by 1% and
reduces the HD by 0.37 mm when using UNETR with a patch size of 8 as
the baseline. In terms of efficiency, HRViT achieves an encoder throughput of
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3.07× and accelerates the FPS from 11.66 images per second (imgs/s) to 20.74
imgs/s, resulting in a significant 78% improvement compared to the baseline. Our
method also yields superiority over SCD [27] in both efficiency and accuracy.

Fig. 2. Visualization results of HRViT on BTCV (left three columns) and BraTS (right
three columns).

We provide visualizations of the halting policy and segmentation predictions
for both datasets in Figure 2. In the third row, the patches marked in red rep-
resent the edge tokens retained by HRViT. These selected patches are primarily
focused on the contours of the segmentation objects, allowing the model to im-
prove its performance with only a small number of tokens. Our segmentation
predictions along the contours demonstrate the ability of HRViT to capture
fine edges with precision and accuracy. This ability is further validated by the
evaluation metric of Hausdorff Distance (HD).

3.4 Ablation Studies

We conduct ablation studies on the UNETR baseline using the BTCV Multi-
Organ Segmentation dataset.
Effects of the Proposed Modules. To investigate the effects of the edge-
aware token halting module, edge reinforcement module, and encoder auxiliary
loss, several experiments are conducted and the results are listed in Table 4.
Compared to randomly halting 90% tokens, our edge-aware token selection cri-
terion improves DSC by 2.07% and decreases HD by 5.82 mm (Row 1 and Row
3). Compared to a learnable token halting approach without additional super-
vision, our edge-aware token selection improves DSC by 1.02% and decreases
HD by 3.61 mm (Row 2 and Row 3). We explore the impact of the edge score
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Table 4. Ablation on the proposed modules. Accedge represents the overall prediction
accuracy of whether tokens belong to edge regions.

Halting Method ρ / t Reinforcement Laux Accedge ↑ DSC↑ HD↓
1 Random ρ = 0.1 - 80.47 18.66
2 Non-Supervision ρ = 0.1 - 81.50 16.45
3 Edge Supervision ρ = 0.1 - 82.52 12.84
4 Edge Supervision t=0.50 0.935 82.21 14.33
5 Edge Supervision t=0.75 0.953 82.65 13.47
6 Edge Supervision t=0.90 0.941 82.43 14.73
7 Edge Supervision t=0.75 ! 0.962 82.95 13.07
8 Edge Supervision t=0.75 ! 0.943 83.18 15.08
9 Edge Supervision t=0.75 ! ! 0.958 83.53 11.69

threshold t in HRViT and observe that the best value is 0.75 compared to 0.5
and 0.9 (Rows 4−6). The experimental results demonstrate that a low threshold
in the edge score prediction network results in imprecise edge detection, whereas
a high threshold excessively restricts the number of tokens identified as edge
tokens. The proposed edge reinforcement module improves the performance of
DSC from 82.65% to 83.18% in HRViT+UNETR. We obtain similar observa-
tions on encoder auxiliary loss, the additional loss brings a 0.3% improvement
on DCS.

Table 5. Ablation on the keeping ratio ρ on HRViT-S. The experiments only compare
different variants of the halting module without edge reinforcement and auxiliary loss.

ρ DSC↑ HD↓ Encoder
Throughput(img/s) FPS(img/s) FLOPs(GMac)

1.00 80.74 17.38 51.26 34.68 273.45
0.50 82.27 15.37 85.78 43.38 206.09
0.25 82.42 14.56 113.58 49.49 170.75
0.10 82.52 12.84 125.78 51.88 151.99

Effects of the Keeping Ratio on HRViT-S.
The performance and inference speed with different ρ are listed in Table 5.

Our results show that performance and efficiency improve as the keeping ratio
decreases to 0.1, indicating that focusing computation on the top 10% of highest-
scoring tokens enhances both accuracy and speed.

4 Conclusion

In this paper, we propose HRViT, a ViT-based edge-aware token halting method
for 3D medical image segmentation. HRViT selects edge tokens and passes them
to deeper Transformer blocks. The rest tokens are halted encoding and referenced
as keys to enhance the selected tokens. Before dense decoding, we reconstruct
the complete sequence and introduce the encoder auxiliary loss to improve seg-
mentation performance. Our HRViT outperforms the baseline even when halting
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majority encoder tokens, and achieves 1.46× and 1.78× FPS on two public med-
ical semantic segmentation benchmarks respectively.
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