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What is Spatio-Temporal Video Grounding (STVG)?

Q STVG aims to localize the object of interest in an untrimmed video with a
spatio-temporal tube given a free-form textual query

Input text query: What does the adult ride in the playground?
Output spatio-temporal tube from an untrimmed video:

Image courtesy
Yang ¢z al, CVPR’2022
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Existing Transformer-based STVG Methods

Q Current Transformer-based STVG methods [Yang et al, CVPR’2022; Jin et al,
NeurIPS’2022, Gu, et al, CVPR’ 2024, etc] inspired by the DETR [Carion et al,
ECCYV, 2020]
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Zero query generation:
o Current STVG methods simply utilize
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Motivation

L Target-specific cues as a prior to guide object query learning

o If object queries know the target from the very beginning, i.e., they know what to learn,
they can better interact with the multimodal features for more accurate localization.
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Motivation

O Oracle Experiments

o Apply groundtruth-generated object queries for STVG.
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Motivation

O Oracle Experiments

o Comparison of performance using zero-initialized object queries and groundtruth-
generated object queries for STVG on three popular benchmarks
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The Proposed TA-STVG Approach

O The proposed Target-Aware Transformer-based STVG generating quertes with
target-aware cues from video and text for STVG

o Comparison between existing methods and our approach
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The Proposed TA-STVG Approach

O The proposed Target-Aware Transformer-based STVG generating quertes with
target-aware cues from video and text for STVG

o Comparison between existing methods and our approach
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(b) Our Target-Aware Transformer-based STVG

Core:
o learning target-aware queries directly from

the given video-text pair
o Queries naturally carrying target-specific cues
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The Proposed TA-STVG Approach

O The proposed Target-Aware Transformer-based STVG generating quertes with
target-aware cues from video and text for STVG
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Overview of TA-STVG, which exploits target-specific information for STVG.

o Multimodal Encoder: visual and textual feature fusion

o Target-aware Query Generation: learning object queries from the video
® Text-guided Temporal Sampling (T'TS)
" Attribute-aware Spatial Activation (ASA)

o Decoder: learning target position in queries from video and text
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The Proposed TA-STVG Approach

O Text-guided Temporal Sampling (T'TS)

o Identify and sample frames
relevant to the target guided by
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O Analysis of TTS

(a) Temporal relevance score s predicted by TTS (red rectangle: groundtruth; rectangles: sampled frames)
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The Proposed TA-STVG Approach

L Attribute-aware Spatial Activation (ASA)
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The Proposed TA-STVG Approach

0 Comparison of attention maps for zero-initialized and our target-aware object
queries in video frames in the spatial decoder

Text: The man in green clothes walks behind the man in brown.

Attention maps of zero-initialization queries

Attention maps of zero-initialization queries Attention maps of our target-aware queries

Attention maps of zero-initialization queries Attention maps of our target-aware queries
Red box: target
Target-queries focus better on target regions, ‘ of interest

which benefits target localization!
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The Proposed TA-STVG Approach

O Experiments — State-of-the-art Comparison
Table 1: Comparison on HCSTVG-v1 (%). Table 2: Comparison on HCSTVG-v2 (%).

Methods m_tloU m_vIoU vioU@0.3 vioU@0.5 Methods m_tloU m_vIoU vioU@0.3 vioU@0.5
STVGBert (Suetal., 2021) - 20.4 294 11.3 PCC (Yuetal, 2021) - 30.0 - -
TubeDETR (Yang et al., 2022a) 43.7 324 49.8 23.5 2D-Tan (Tan et al., 2021) - 30.4 504 18.8
STCAT (Jin et al., 2022) 49.4 35.1 57.7 30.1 MMN (Wang et al., 2022) - 30.3 49.0 25.6
SGFDN (Wang et al., 2023c) 46.9 35.8 56.3 37.1 TubeDETR (Yang et al., 2022a) 539 36.4 58.8 30.6
STVGFormer (Lin et al., 2023b) - 36.9 62.2 34.8 STVGFormer (Lin et al., 2023b) 58.1 38.7 65.5 33.8
CG-STVG (Gu et al., 2024a) 52.8 38.4 61.5 36.3 CG-STVG (Gu et al., 2024a) 60.0 39.5 64.5 36.3
RBacaling (r\“\ A0 O 26 4 &7 £ 21 1 B 13 ( AY S50 2 270 <o W'+ 22 .0
TA-STVG (ours) 53.0(+3.1) 39.1 (27 63.1 (455 36.8¢ +4.7)I I TA-STVG (ours) 60.4 (+2.1) 40.2 (23 65.8 (432 36.7 (+31)

Table 3: Comparison with existing state-of-the-art methods on VidSTG (%).

Methods Declarative Sentences Interrogative Sentences
m_tloU m_vloU vioU@0.3 vioU@0.5 m_tloU m_vIoU vioU@0.3 vioU@0.5
STGRN (Zhang et al., 2020b) 485 19.8 258 14.6 47.0 18.3 21.1 12.8
OMRN (Zhang et al., 2020a) 50.7 23.1 32.6 16.4 49.2 20.6 28.4 14.1
STGVT (Tang et al., 2021) - 21.6 29.8 18.9 - - - -
STVGBert (Suet al., 2021) - 24.0 30.9 18.4 - 22,5 26.0 16.0
TubeDETR (Yang et al., 2022a) 48.1 30.4 425 28.2 46.9 25.7 35.7 23.2
STCAT (Jin et al., 2022) 50.8 33.1 46.2 32.6 49.7 28.2 39.2 26.6
SGFDN (Wang et al., 2023c) 45.1 28.3 41.7 29.1 44.8 25.8 36.9 23.9
STVGFormer (Lin et al., 2023b) - 33.7 47.2 32.8 - 28.5 39.9 26.2
CG-STVG (Gu et al., 2024a) 514 34.0 47.7 33.1 49.9 29.0 40.5 27.5
Baseline (ours) 49.5 32.3 449 31.6 48.6 27.5 38.5 25.6
I TA-STVG (ours) 51.7 (+2.2) 34.4 (+2.1) 48.2 (133) 33.5 (+1.9) 50.2 (+1.6) 29.5 (+2.0) 41.5 (+3.0 28.0 (2.4 I
Observations:
o State-of-the-art by outperforming other methods Target-Aware Transformer
o Significantly improving the baseline method using makes better STVG! 00
zero-initialized queries =
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The Proposed TA-STVG Approach

O Experiments — Key Ablations (see more in the paper)

Table 4: Ablations of TTS and ASA. Table 5: Ablations of branches in TTS. “TG”, Table 6: Ablations of attributes in ASA. “SG”,
“AB”, and “MB” are the text-guided, appearance ~ “AA”, and “MA” are the subject-guided, appear-
TTS ASA m tloU m_vIoU vioU@0.3 vIoU@0.5 and motion branches, respectively. ance and motion attributes, respectively.
o - - 499 36.4 57.6 321 TG AB MB m_tloU m_vloU vIoU@0.3 vIoU@O.5 SG AA MA m_tloU m_vloU vIoU@0.3 vIoU@0.5

o - - 514 380 60.4 34.1 [ - - 522 384 61.7 36.2
e v - 52.2 38.4 61.7 36.2 e v v 51.8 384 61.1 36.3 ® v v - 523 386 62.4 362
® - v 514 38.0 60.4 34.1 ® v - v 53 383 62.0 36.5 ® v - v 527 386 61.3 36.6
(4] v v 518 385 62.0 36.9 (4] v v 526 388 61.9 36.8
e v v 53.0 39.1 63.1 36.8 ® v v v 530 391 63.1 36.8 ® v v v 530 391 63.1 36.8

O Experiments — Validation of Generality

o Apply our TTS and ASA modules on two popular frameworks, including TubeDETR
[Yang et al, CVPR’2022] and STCAT [Jin et al, NeurIPS’2022]

Table 10: Incorporate the TTS and ASA modules into
different methods on HCSTVG-v1 (%). ¢: results

from the original paper. #: retrained results. Observation:
Method TTS + ASA  m_tloU m_vloU vioU@0.3 vioU@0.5 o TTS and ASA are
@ TubeDETR - 43.7 324 49.8 23.5 .
© TubeDETR* - 432 316 49.1 25.5 general and applicable
® TubeDETR* v 45.5 23 33.5(:19 53.0 :3.9) 27.1(+16) to other methods for
@ STCAT - 49.4 35.1 57.7 30.1 impr'ovemen‘rs
® STCAT* - 48.3 34.9 57.2 29.8
® STCAT* v 50.0 +1.7) 36.7 (+1.8) 59.9 (+2.7) 31.7 (+1.9
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The Proposed TA-STVG Approach

O Experiments — Demos

Text: The woman goes to the Text: The man turns around and points to the woman
man and talks to him. in the blue skirt, and takes a few steps to stop.
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Red box: our results;
Green box: groundtruth.
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( Knowing Your Target @): Target-Aware Transformer
Makes Better Spatio-Temporal Video Grounding

O Code and model:
https://github.com/HengLan/TA-STVG
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