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Abstract— This paper tackles the challenging problem of
semi-supervised monocular 3D object detection with a general
framework. In specific, having observed that the bottleneck
of this task lies in lacking reliable and informative samples
from unlabeled data for detector learning, we introduce a
novel simple yet effective ‘Augment and Criticize’ pipeline
that mines abundant informative samples for robust detection.
To be more specific, in the ‘Augment’ stage, we present
the Augmentation-based Prediction aGgregation (APG), which
applies automatically learned transformations to unlabeled
images and aggregates detections from various augmented
views as pseudo labels. Since not all the pseudo labels from
APG are beneficially informative, the subsequent ‘Criticize’
phase is introduced. Particularly, we present the Critical
Retraining Strategy (CRS) that, unlike simply filtering pseudo
labels using a fixed threshold, employs a learnable network
to evaluate the contribution of unlabeled images at different
training timestamps. This way, the noisy samples prohibitive
to model evolution can be effectively suppressed. In order to
validate ‘Augment-Criticize’, we apply it to MonoDLE [1] and
MonoFlex [2], and the two new detectors, dubbed 3DSeMoDLE
and 3DSeMoFLEX, achieve state-of-the-art results with consistent
improvements, evidencing its effectiveness and generality.

I. INTRODUCTION

Monocular 3D (Mono3D) object detection plays an essen-
tial role for agents in understanding the real world. However,
due to its ill-posed property [3], Mono3D detection remains
an open problem. Recently, with the flourishing of deep
learning, the community seeks to circumvent the mathemat-
ical depth estimation and solve the task in a data-driven
manner. A plethora of deep models have been designed
and demonstrated remarkable performance [1], [2], [4]–[6].
Despite this, current data volume in Mono3D object detection
is nowhere enough for achieving a human-level 3D sensing
ability. Since manually annotating 3D boxes in larger-scale
data is costly, we argue that semi-supervised learning could
be an economical substitute.

Semi-supervised learning, given a small amount of manu-
ally annotated training samples, aims to explore beneficial
information from massive unlabeled data for training. It
has been extensively studied in 2D vision tasks, such as
classification [7]–[10], detection [11]–[13] and segmenta-
tion [14]–[16], yet surprisingly less explored for Mono3D
detection. One possible reason is that its ill-posed task def-
inition makes algorithms suffer from complex environments
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Fig. 1. Motivation and Proposal. The differences between our method
(red) and previous semi-supervised learning framework (green) in pseudo
label (PL) generation and student model retraining. The introduced frame-
work can improve detection recall by observing different views of an image
(red dots in (a)), and dynamically determine when to discard an unlabeled
sample during training (line-chart in (b)) by the learnable critical module.

and eventually incurs noisy pseudo-label generation on the
unlabeled data, degrading performance. A previous method
of [17] attempts to construct the multi-view consistency for
semi-supervised learning of Mono3D object detection. It is,
however, restricted to stereo or multi-view requirement that
may be not easily guaranteed in practical scenarios. Instead,
in this work, we tend to construct a semi-supervised Mono3D
detection framework using only single-camera, -view, and -
modality inputs, without relying on the multi-view, or any
other modality (e.g., LiDAR) information.

Revisiting the road map of semi-supervised learning, we
observe that, the bottleneck always lies in the lack of
abundant reliable and informative samples from unlabeled
data for training. Specifically, two challenges are faced: How
to robustly generate high-quality pseudo labels for unlabeled
data and How to properly leverage these pseudo labels
for effective learning. The former mainly focuses on the
quality of training samples, while the latter is related to the
evolving direction of the detection model. Yet as discussed
earlier, it is non-trivial to generate precise pseudo labels
under the pure monocular 3D premise. Previous methods
in 2D tasks (e.g., [11], [18]) try to alleviate this issue by
carefully choosing a threshold for detection box selection
(see Fig. 1). This handcraft selection, however, may cause
overfit to a specific model, limiting the resilience of the
semi-supervised method. Addressing this problem, a robust
pseudo label generation strategy is thus necessary. In



addition, another essential challenge for semi-supervised
Mono3D object detection is the lack of an adaptive training
strategy to deal with pseudo labels with different qualities.
Intuitively the high-quality pseudo labels should contribute
more to model updating, and meanwhile the influence of
low-quality samples should be suppressed. The classification
score (or its variants) of a detection box is adopted in 2D
methods (e.g., [11]) to filter out the low-quality samples. But
such a handcrafted rule-based manner is hard to guarantee
that the model evolves along the right direction, because a
sample could show diverse effects to the model at different
training steps. Therefore, a more adaptive mechanism is
needed to guide the training on unlabeled data.

Contribution. Motivated by the above, we propose a novel
‘Augment-Criticize’ framework to approach the two chal-
lenges in semi-supervised monocular 3D object detection.

In specific in ‘Augment’ stage, we introduce a simple yet
effective Augmentation-based Prediction aGgregation strat-
egy, dubbed APG, that aims at robustly generating pseudo
labels for unlabeled data (i.e., the first challenge). The core
idea is to aggregate predictions from different observations
of an image, which we find effectively reduces the detection
bias and improves the robustness of pseudo label generation
(see Fig. 1 again). In order to avoid handcrafted selection,
the transformation parameters for generating an observation
are automatically learned by using an efficient reward-based
Tree-Parzen-Window algorithm [19]. Interestingly, we find
that, content-based transformations such as color-jitter are
not helpful, yet geometry-based transformations like resize
and crop exhibit much affirmative effect, for improving
detection recall, providing guidance for future research.

Since not all the pseudo labels from APG is beneficially
informative, an adaptive strategy is desired to exploit these
pseudo labels for effective model training (i.e., the second
challenge), which motivates the proposed ‘Criticize’ stage.
More specifically, in this stage, a Critical Retraining Strategy
(CRS) is imposed to adaptively update the model with
noisy pseudo labels. Particularly, CRS contains a memory
bank to preserve evaluation images and a critical module
to determine which pseudo label benefits to update the
model. At each training step, the loss of each pseudo label
corresponds to an update choice of the model. The critical
module samples images from the memory to determine
whether this update improves model capability. If the model
resembles to a worse one, the update would be discarded
(self-criticise). During the cyclical updating of the memory
bank, the critical module gradually encodes the knowledge
of the whole evaluation set to its weight parameters, and
therefore it becomes more powerful along training period.

To verify our ‘Augment-Criticize’ framework, we apply
it to MonoDLE [1] and MonoFlex [2]. In experiments,
compared with baselines, our semi-supervised detectors,
3DSeMoDLE and 3DSeMoFLEX, achieve consistent improve-
ments for about 3% CAR(Mod.) AP3D on KITTI, which shows
the effectiveness and versatility of our method.

In summary, we make the following contributions:

(1) We propose a novel ‘Augment-Criticize’ framework for
semi-supervised Mono3D object detection.
(2) We propose an augmented-based prediction aggregation
to improve the quality of pseudo labels for unlabeled data.
(3) We propose a critical retraining strategy that adaptively
evaluates each pseudo label for effective model training.
(4) We integrate our semi-supervised framework into different
methods, and results evidence its effectiveness.

II. RELATED WORK

A. Monocular 3D Object Detection

Mono3D object detection, which only requires vision
clues from a single camera, is a widely applied solution
for agents to perceive the 3D world [1], [2], [20]–[27].
Earlier attempts devoted massive efforts to the ill-posed depth
estimation problem by adopting an isolated depth model [28]
to generate pseudo point cloud or lifting 2D features to
3D space [29]. Despite the promising results, the hefty
computation overhead entailed by dense depth estimation
prohibits such methods from practical applications. Later the
depth estimation is moved to an auxiliary head, [1], [2],
[4], [6], which enables end-to-end model training with a
neater framework. Representative methods like SMOKE [4]
and MonoDLE [1] adopt CenterNet-like architectures [30],
whereas FCOS3D [6] and PGD [31] extend the 2D FCOS
detector [32] into a 3D detection model. In this paper, we
aim to design a general semi-supervised framework, which
is agnostic of and robust to specific model designs, to push
the evolution of modern Mono3D object detectors.

B. Semi-Supervised Learning

Semi-Supervised Learning (SSL) is attractive because of
its capability to further unveil the power of machine learning
with abundant cheap unlabeled data [8], [9], [33]–[39]. Due
to the space limitation, this section only reviews self-training-
based methods, which is one of the most engaging directions
that has been studied for decades [40], [41]. In general,
self-training-based semi-supervised learning methods first
train a teacher model with a small set of human-annotated
data. The teacher model then generates pseudo labels on
a much larger set of unlabeled data. Finally, a student
model is trained with both human-labeled and self-annotated
data. Such a paradigm has demonstrated great success in
image classification [7]–[10], semantic segmentation [14]–
[16], and 2D object detection [11]–[13], [42]. While different
applications usually require additional bells and whistles,
the core components of semi-supervised learning remain un-
changed: how to generate high-quality pseudo-label, and how
to effectively utilize the pseudo-label to train student models.
Mean-Teacher [7] proposes temporal ensembling to facilitate
retraining. Soft-Teacher [11] utilizes the classification score
to reweight supervision on the student model and imposed
2D bounding box jitter to filter unreliable pseudo labels.
ST++ [14] adopts strong augmentations on the unlabeled
samples and leverages evolving stability during training to
prioritize high-quality labels. Compared with well-studied
2D tasks, it is much more challenging for Mono3D object



detection to collect reliable pseudo labels. Although such
issue can be alleviated by introducing multi-view consis-
tency [17], compared with abundant single-view datasets,
high-quality stereo or multi-view datasets are much harder
to collect. Besides, learning consistency among video frames
is vulnerable to moving objects.

III. METHOD

A. Preliminary

Task Definition. Given an image sample x in the labeled
dataset, its label y contains information about the category,
location, dimension, and orientation of objects visible in x.
Semi-supervised Mono3D object detection aims to acquire
knowledge from both annotated dataset Dl = {xl

i, y
l
i}

Nl
i=1

and unlabeled dataset Du = {xu
j }

Nu
j=1, where Nu ≫ Nl.

Vanilla Self-Training Scheme. Self-training is a prominent
branch in semi-supervised learning [14], [43]. A vanilla self-
training [14] pipeline contains three major steps: 1) Standard
Supervised Training: which trains a teacher model Mt on
the labeled dataset Dl, 2) Pseudo Label Generation: which
predicts pseudo labels {ŷ = Mt(xj)|xj ∈ Du} on the
unlabeled dataset Du, and 3) Retraining with Noisy Labels:
which learns a student model Ms for final evaluation. Using
Ms as the new teacher, the step 2 and 3 can be repeated until
satisfactory performance is obtained.

In this paper, we elaborately investigate the pseudo label
generation (step 2) and retraining strategy (step 3), which are
the most crucial parts of the self-training scheme. To fully
demonstrate the simplicity of the proposed semi-supervised
framework, we don’t iteratively perform step 2 and 3.

B. Augmentation-Based Prediction Aggregation

To obtain high-quality pseudo labels of the unlabeled data,
previous 2D semi-supervised learning methods [6], [11],
[12], [18], [44] resort to a suitable threshold τ to filter
predicted boxes. However, it is non-trivial to determine an
optimal threshold for each different method. In order to
alleviate the dependency on such a handcrafted threshold,
we propose the APG to improve the robustness of pseudo-
label generation by effectively aggregating predictions from
different observations of the same image. The proposed
algorithm, that is illustrated in Alg. 1, consists of three steps:

1) Firstly, given an input image from the unlabeled dataset
xu
j ∈ Du, the teacher model Mt predicts the detection results

for xu
j and its K augmented images. Let Pr denote the raw

prediction of xu
j , and P0

f and {Pk
f }Kk=1 represent the post-

processed (by the pre-defined threshold τ ) predictions of xu
j

and the augmented images, respectively.
2) Secondly, for each predicted box pi in P0

f , we apply
the kNN clustering algorithm to find its nearest neighbors
in {Pk

f }Kk=1, that forms a cluster. pi is considered as a
pseudo label for xu

j . Intuitively, the number of assigned
predictions n in the cluster indicates the difficulty degree
in detecting an object, and the variance σ by Maximum
Likelihood Estimation (MLE) measures the uncertainty of
pi. With the classification score s, these by-products are
combined by Eq. 1 to demonstrate pi’s reliability, which

Algorithm 1: APG-u Pseudocode
Input: Predictions of different observations,
Raw prediction Pr of an unlabeled image,
Filtered prediction P0

f , N = len(P0
f ),

Filtered predictions {Pk
f }Kk=1 of augmented images,

Threshold τ for kNN
Output: Aggregated prediction P
Initialize set S ← {{p1}, · · · , {pN}}, pn ∈ P0

f

for image observation k ∈ {1, . . . ,K} do
for prediction pi ∈ Pk

f do
(index j, distance l) ← kNN(pi,S)
if l < τ then
Sj ← Sj ∪ {pi} # append pi to clusters

else
Sj ← Sj ∪ {{pi}} # create new clusters

for loop index n, cluster set {pm}Mm=1 ∈ S do
location µ, variance σ = MLE ({pm}Mj=m)
if n < N then
P ← P ∪ {(Sn[0], σ)}

else
P ← P ∪ {(NearestSearch(µ,Pr), σ)}

return P

is then used to weight the loss of each unlabeled data in
retraining.

w = γ1 × s+ (1− γ1)× exp (−σ

n
∗ γ2), (1)

We set γ1 = 0.6 and γ2 = 6 in our model, respectively.
3) Finally, for the unused predictions in {Pk

f }Kk=1, they
would be self-clustered. The cluster centers are treated as
reference points, whose closest prediction in Pr are selected
as pseudo labels. Their uncertainties are measured by Eq. 1.

Moreover, inspired by successful attempts at auto data
augmentations [45], [46], we resort to the Tree-Structured
Parzen Estimators (TPE) [19] to automatically pick the
K transformations and their hyper-parameters (e.g., resize
ratio). More details are presented in supplementary materials.

C. Critical Retraining Strategy

The generated pseudo labels inevitably contain noises, thus
it is crucial to explore informative ones that benefit model
evolution. The uncertainty measurements of pseudo labels
provided by the APG module can enhance the stability of
retraining, but it still suffers from the fixed weight of each
sample. We argue that the contribution of each sample during
model training should adapt to the model’s state as training
proceeds. To this end, we propose a learning-based critical
module to adaptively find the informative unlabeled data,
which may provide a new perspective for semi-supervised
Mono3D object detection to mine informative samples.

Specifically, the critical module first evaluates the effect
of a training sample from the unlabeled dataset, and then
assigns it with a 0-1 binary flag indicating whether to
back-propagate its gradients. From a reinforcement learning
perspective, we regard the student model as an agent, its
weight parameters as the state, the input image and the
output of the model as an observation. At state S, a detection
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whether a sample from the unlabeled data benefits model convergence. The
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loss Lunsup for the agent can be calculated based on the
given observation O. If the gradients of Lunsup are back-
propagated, the state will be updated to S ′

and the model
output (observation) will be updated to O′

. Our proposed
critical module then evaluates whether S ′

is the optimal
choice of updated S based on the observations O and O′

.
At each training step, an input image xu

i from the unla-
beled data is fed into the detector M (agent), obtaining the
predictions D (classification and regression response maps),

D = M(xu
i |S), (2)

With the pseudo label ŷui , we can get the training loss,

Lunsup = L(D, ŷui ), (3)

We take one ‘trial’ gradient descent step to obtain the
updated model M ′ with parameters S ′

. Then, the critical
module evaluates the effectiveness of this update (S → S ′

),

v = C(xu
i ,D,D

′
|Ψ), (4)

where D
′

is the predictions of the updated model M ′ on
xu
i , and Ψ is the parameter of the critical module. When

v is larger than 1, xu
i will be considered as an informative

sample, and this update is retained. Otherwise, the update is
discarded, and the model parameters will be reverted to S.
The scheme is illustrated in Fig. 2.

Moreover, it is crucial to design a feasible training objec-
tive to make sure the cirtical module can provide reliable
feedback. In our work, we propose a reward function to
supervise the training of the critical network,

r = L(M(xi|S), yi)− L(M ′(xi|S
′
), yi), (5)

where (xi, yi) denotes samples from the training set of the
labeled dataset Dl. The L2 loss is applied to v and r for
supervising the learning of critical module. During training,
we alternately update the detector and critical module.

Notably, it’s impractical to evaluate all samples to get a
reliable reward r due to the unaffordable computation cost.
Motivated by the self-supervised method MoCo [47], we
employ a memory bank (queue) to buffer the training samples
in Dl and cyclically update it.

IV. EXPERIMENTS

A. Experimental Setup

Dataset. We conduct experiments on both KITTI [57] and
Waymo [58]. KITTI is commonly used for evaluation in
semi-supervised monocular 3D object detection methods. But
few works evaluate the large-scale Waymo benchmark. In
our work, we conduct experiments on both of them to show
the effectiveness and generality of our model. For KITTI,
following [59], we split the original training set into 3,712
training and 3,769 validation samples. The unlabeled data
contains 33,507 samples obtained from the official unlabeled
videos in KITTI. Similarly in Waymo, 3162 samples (only
about 2%) from the front cameras are used as annotated
samples, and the left 154919 samples are used as unlabeled
ones. The metrics to indicate performance follow the official
design of each benchmark. We will provide detailed image
information upon code release.

Implementation Details. We integrate the proposed semi-
supervised framework to classical Mono3D detectors Mono-
DLE [1] and MonoFlex [2]. Unless otherwise specified, the
proposed APG augments an input image from the unlabeled
dataset to K = 9 different views. While the initial threshold
for filtering detection boxes is set as 0.65, other predictions
with confidence scores lower than 0.65 will be used in the
center aggregation algorithm. For the proposed CRS, we
construct the critical module with ResNet-50 [60]. Notably,
the critical module is not used during inference. For a batch
size of 8, we chop off the 2 samples with lowest evaluation
value v in CRS training. For fair comparisons, we reproduce
the baseline methods MonoDLE and MonoFlex based on the
official codes provided by the authors. While most Mono3D
methods are trained on a single GPU, we adopt 8 A6000
GPUs in all experiments to facilitate training with a larger
data volume. Ablations are conducted based on MonoDLE
and evaluated on KITTI unless otherwise specified. For
simplicity, the proposed copy-paste is not used in ablation
experiments unless otherwise specified.

B. Main Results

Quantitative comparisons of our method with other state-
of-the-art models on the KITTI leaderboard are presented
in Tab. I and Tab. II. Also notably, few semi-supervised
Mono3D methods provide performance on challenging cat-
egories of pedestrian and cyclist on KITTI. It shows that by
effectively leveraging larger volumes of unlabeled data, our
proposed semi-supervised strategy significantly boosts the
performance of the baseline methods. In particular, our ap-
proach improves the baseline MonoDLE by +3.32%/+2.89%
on AP3D(Mod.) and APBEV(Mod.) of the KITTI test set, respec-
tively. The gains on AP(Easy) of our 3DSeMoDLE surpris-
ingly exceeds +5% on all metrics and data splits of KITTI.



TABLE I
COMPARISION WITH STATE-OF-THE-ART (SOTA) METHODS ON KITTI CAR. WE PRESENT THE EVALUATION RESULTS OF ‘CAR’ IN THE KITTI

TEST AND VALIDATION SETS. METHODS ARE SORTED BASED ON THE RESULTS OF CAR(Mod.) AP3D ON TEST SET.

Method Test AP3D Test APBEV Val AP3D

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
PatchNet [48]

Depth
15.68 11.12 10.17 22.97 16.86 14.97 - - -

D4LCN [22] 16.65 11.72 9.51 22.51 16.02 12.55 - - -
DDMP-3D [49] 19.71 12.78 9.80 28.08 17.89 13.44 - - -
Kinematic3D [21] Multi-frames 19.07 12.72 9.17 26.69 17.52 13.10 19.76 14.10 10.47
MonoRUn [50]

LiDAR
19.65 12.30 10.58 27.94 17.34 15.24 20.02 14.65 12.61

CaDDN [51] 19.17 13.41 11.46 27.94 18.91 17.19 23.57 16.31 13.84
MonoDTR [25] 21.99 15.39 12.73 28.59 20.38 17.14 24.52 18.57 15.51
AutoShape [52] CAD 22.47 14.17 11.36 30.66 20.08 15.59 20.09 14.65 12.07
SMOKE [4]

None

14.03 9.76 7.84 20.83 14.49 12.75 14.76 12.85 11.50
MonoPair [53] 13.04 9.99 8.65 19.28 14.83 12.89 16.28 12.30 10.42
RTM3D [54] 13.61 10.09 8.18 - - - 19.47 16.29 15.57
PGD [31] 19.05 11.76 9.39 26.89 16.51 13.49 19.27 13.23 10.65
MonoRCNN [23] 18.36 12.65 10.03 25.48 18.11 14.10 16.61 13.19 10.65
Zhang et al.DLE [55] 20.25 14.14 12.42 28.85 17.72 17.81 20.82 15.64 13.82
GUPNet [24] 20.11 14.20 11.77 - - - 22.76 16.46 13.72
HomoLossFLEX [56] 21.75 14.94 13.07 29.60 20.68 17.81 23.04 16.89 14.90
MonoDLE [1] None 17.23 12.26 10.29 24.79 18.89 16.00 17.45 13.66 11.68
3DSeMoDLE Unlabeled 23.11 15.58 13.58 30.99 21.78 18.64 22.87 17.65 14.83
Improvement v.s. baseline +5.88 +3.32 +3.29 +6.20 +2.89 +2.64 +5.42 +3.99 +3.15
MonoFlex [2]† None 19.94 13.89 12.07 28.23 19.75 16.89 21.62 16.05 13.40
3DSeMoFLEX Unlabeled 23.55 15.25 13.24 32.57 21.21 18.07 25.14 18.65 15.58
Improvement v.s. baseline +3.61 +1.36 +1.17 +4.34 +1.46 +1.18 +3.52 +2.60 +2.18

TABLE II
COMPARISONS ON ‘PEDESTRIAN’ AND ‘CYCLIST’ OF KITTI.

Method Ped. AP3D IoU ⩾ 0.5 Cyc. AP3D IoU ⩾ 0.5
Easy Mod. Hard Easy Mod. Hard

baseline 9.64 6.55 5.44 4.59 2.66 2.45
3DSeMoDLE 10.78 7.26 6.05 7.04 4.24 3.56
Improvement +1.14 +0.71 +0.61 +2.45 +1.58 +1.11

TABLE III
COMPARISONS ON WAYMO VALIDATION SET.

Method Veh. Ped. Cyc.
mAP mAPL mAP mAPL mAP mAPL

baseline 41.53 24.91 13.34 7.87 5.13 3.17
+10%Unlabel 49.13 30.26 16.52 9.87 8.63 5.22
Improvement +7.60 +5.35 +3.18 +2.00 +3.50 +2.05

+100%Unlabel 53.11 34.37 19.41 11.83 12.89 7.73
Improvement +11.58 +9.46 +6.07 +3.96 +7.76 +4.56

When integrating our method to MonoFlex [61], it achieves
gains of +3.61/1.36 on AP3D(Easy/Mod.), respectively, evi-
dencing the generality of our framework. Moreover, on the
challenging categories of KITTI (see Tab. II) and the much
larger benchmark Waymo (see Tab. III), our method con-
sistently demonstrates performance improvements, providing
clear validation of the efficacy and applicability of the pro-
posed approach. Remarkably, even with a mere 2% labeled
data and 10% unlabeled data of Waymo, our method achieves
a substantial 7.6% improvement in mAP for Vehicle. When
leveraging all unlabeled data, the mAP for Vehicle shows
an impressive gain of 11.58%. The consistent advancements
across challenging categories such as pedestrian and cyclist
underscore the efficacy of our proposed method.

C. Ablation Studies and Analysis

1) Overall Component-wise Analysis: To understand the
effect of each component, we incrementally apply the pro-
posed APG and CRS to the baseline detector MonoDLE [1]
with Car AP3D(Mod.) of 13.66. As shown in Tab. IV, the
vanilla self-training strategy improves the baseline model for
2.11% on Car AP3D(Mod.) without bells and whistles. Subse-

TABLE IV
COMPONENT-WISE ANALYSIS.

Method Car AP3D IoU ⩾ 0.7 Ped. AP3D IoU ⩾ 0.5
Easy Mod. Hard Easy Mod. Hard

Baseline 16.77 13.66 11.54 5.53 4.45 3.33
Plainest Self-Training 20.14 15.77 13.27 7.27 5.99 4.74

+ CRS 22.64 17.53 14.59 9.43 6.81 5.71
+ APG 22.71 17.56 14.68 9.35 6.77 5.58

+ APG + CRS 22.87 17.65 14.83 10.99 8.25 6.72

Fig. 3. Effectiveness of APG. We demonstrate the robustness on both
pseudo label quality (recall) and 3D object detection performance (AP@40).

quently, we apply the proposed APG and CRS to the model,
respectively. It shows that both of them can significantly
improve Car AP3D(Mod.) by about 2.5%, which validates our
argument that robust pseudo label generation and finding
informative samples are both crucial for semi-supervised
Mono3D object detection. Last but not least, while maintain-
ing the superiority on Car, combining the proposed APG and
CRS can pre-eminently improve Ped.(Mod.) AP3D for about
1.4%. In Mono3D object detection, the pedestrian is more
challenging than car because of the much smaller object size,
for which a slight prediction shift leads to drastic degradation
of IoU. The pseudo labels of pedestrian thus contain much
more noise. Therefore, the gains on pedestrian prove CRS’s
ability in adaptively selecting informative samples from
severely noisy pseudo labels.

2) Robustness of APG: Previous semi-supervised methods
usually filter detection boxes to generate pseudo labels by
applying a threshold τ on the classification score. However,



TABLE V
EFFECTIVENESS OF REWEIGHTING STRATEGY.

Method Car AP3D IoU ⩾ 0.7 Ped. AP3D IoU ⩾ 0.5
Easy Mod. Hard Easy Mod. Hard

① w/o APG 21.75 16.32 14.15 8.34 6.04 4.80
② w/ APG 22.66 17.38 14.67 7.71 5.88 4.74
③ ② + reweight 22.71 17.56 14.68 9.35 6.77 5.58

TABLE VI
EFFECTIVENESS OF CRS. ‘CM.’ DENOTES THE PROPOSED CRITICAL

MODULE.

Method Car AP3D IoU ⩾ 0.7 Ped. AP3D IoU ⩾ 0.5
Easy Mod. Hard Easy Mod. Hard

① Baseline 22.71 17.56 14.68 9.35 6.77 5.58
② bbox jitter filter 22.50 16.71 14.40 8.36 6.30 5.07
③ score filter 21.86 17.20 14.31 9.04 7.25 5.75
④ CRS w/o cm. 22.01 16.18 13.95 7.05 5.58 4.26
⑤ CRS w/ cm. 22.87 17.65 14.83 10.99 8.25 6.72

as presented in Fig. 3 (the blue solid line), it suffers from a
drastic degradation on Recall when enlarging the threshold.
Besides, its detection performance is sensitive to threshold
change (the cyan dotted line). In contrast, the performances
of our APG (the red dotted lines) are more stable, which
proves its robustness in generating pseudo labels. We select
τ = 0.65 in our model based on the observation of this exper-
iment, with which the APG can boost the Car (Mod.) AP3D
for 1.06%, as shown in Tab. V. Though we need to set an
initial threshold in APG, our experiment (the red solid line)
shows that it is less sensitive to threshold change. Fig. 3
also shows that geometry-based augmentation (e.g. resize,
the red solid line) is superior to the content-based counterpart
(e.g. color jitter, the green solid line) in improving the
quality of the generated pseudo labels. This may attribute to
their different mechanism that content-based transformations
only marginally modify the context, while geometry-based
transformations can significantly migrate the position and
scale distribution of objects, which are the common reasons
for false negatives in Mono3D object detection. Notably, the
transformations are automatically learned by TPE, which can
be effortlessly integrated into other detectors. All details and
source codes as well as the results about TPE will be released
for reproduction purpose.

3) Sample Weight from APG: While APG improves the
overall recall of pseudo labels, it inevitably introduces more
noise to challenging categories (e.g., pedestrian) as shown
in Tab. V. As a result, the Ped. (Mod.) AP3D drops 0.16%
(② v.s. ①). To alleviate this, we weight the loss of each
unlabeled sample in the retraining phase with the by-product
clues from the proposed APG (see Eq. 1). As shown in
Tab. V, our strategy can not only avoid performance degra-
dation but also impressively obtain 0.89% improvement on
the Ped. (Mod.) AP3D (③ v.s. ②), which shows the versatility
of the proposed APG.

4) Different strategies for selecting informative samples:
The proposed CRS aims to adaptively separate informative
samples from noisy ones. To demonstrate the superiority of
CRS, we compare against some alternative strategies which
have demonstrated success in other tasks. The compared
counterparts include 1) filtering samples with the quality
score of pseudo labels introduced in Eq. 1, 2) the bbox

Vanilla Preserved Samples

Vanilla Filtered Samples

Critical Adaptive
Reward

Fig. 4. Adaptive Reward of CRS. Vanilla strategies invariably drop out
or preserve a sample whereas our critical module predicts adaptive rewards.

jitter proposed for 2D detection in [11]. We tailor the 2D
box jitter strategy for 3D detection, and details are presented
in the supplementary material. As shown in Tab. VI, bbox
jitter causes performance degradation because of its unre-
liable quality measurement for pseudo labels (② v.s. ①).
③ throws away unreality samples based on classification
and location scores (see Eq. 1). It shows that ③ only
slightly improves pedestrian detection performance, however
still lagging behind our proposed CRS (⑤). Besides the
unreliability of detection scores and box jitter in Mono3D,
another underlying reason for the advance of CRS is that ①
and ② are static strategies where the filtering indicator of
a sample holds along the retraining phase. Conversely, the
indicator learned by the critical module changes in different
retraining timestamps, as shown in Fig. 4. It both intuitively
and theoretically makes sense that the importance of a sample
should be mutative in training.
Learnable or not. The proposed CRS learns the filtering
indicator with a learnable critical module (Eq. 4). Yet intu-
itively, we can simply determine the contribution of a sample
by the training loss before and after the model updating with
Eq. 5. To validate the necessity of the proposed scheme,
we prohibit the critical module and directly leverage the
reward calculated in Eq. 5 as the indicator to select samples
during retraining. As shown in Tab. VI ④, unsurprisingly,
this naive strategy degrades the overall performance because
of its biased optimization objective. In particular, the strategy
of ④ can only access several samples during calculating
the reward, lacking the global vision of the evaluation set.
In contrast, the learning-based critical module encodes the
knowledge of the whole dataset to its weights parameters
through cyclically updating the memory bank, which can
provide better indicators for model retraining (see ⑤).

V. CONCLUSION

In this paper, we propose the novel ‘Augment and Crit-
icize’ policies to construct a general framework for self-
training-based semi-supervised monocular 3D object detec-
tion by exploring informative samples. The proposed APG is
able to aggregate samples from different views of unlabeled
images and copy-paste augmentation for robust label gener-
ation. On the other hand, the CRS adopts a learnable critical
module to measure the reward of each pseudo sample and
filter noisy ones to enhance model training. Our extensive ex-
periments and analyses on multiple benchmarks demonstrate
the effectiveness of our approach.
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