

SwinTrack: A Simple and Strong Baseline for Transformer Tracking

Liting Lin^{1,2*}

A simple but strong baseline, *SwinTrack*, is proposed with pure Transformer architecture

Speed (fps)

- ✤ We present a simple yet effective motion token in SwinTrack to enhance the robustness
- We conduct empirical studies on different components of SwinTrack, offering guidance for future tracker design
- SwinTrack shows SoTA results on multiple benchmarks, especially setting a new record with 0.713 SUC score on the challenging LaSOT

Heng Fan^{3*} Zhipeng Zhang⁴ Yong Xu^{1,2} Haibing Ling⁵ (*equal contributions) ¹South China Univ. of Tech. ²Peng Cheng Lab ³University of North Texas ⁴DiDi Chuxing ⁵Stony Brook University

$$f_z^l, f_x^l = \text{DeConcat}\left(\text{SelfAttn}\left(\text{Concat}\left(f_z^{l-1}, f_x^{l-1}\right)\right)\right)$$

$$\mathbf{E}_{motion} = Concat \left(\mathbf{E}_{s(1)} + \mathbf{E}_{s(2)} + \dots + \mathbf{E}_{s(n)} \right)$$

$$s(i) = \max(t - i \times \Delta, 1)$$

• Vision-motion representation learning

 $f_{vm} = CrossAttn(Concat(E_{motion}, f_z^L, f_x^L))$

Untied positional encoding with multi-dim multi-stream extension

Prediction Head & Loss Function

Response map generation by classification branch

• Three-layer perceptron with IoU-aware classification score

Box regression map generation by regression branch

• Three-layer perceptron with GloU loss

Code/Results

Experiments

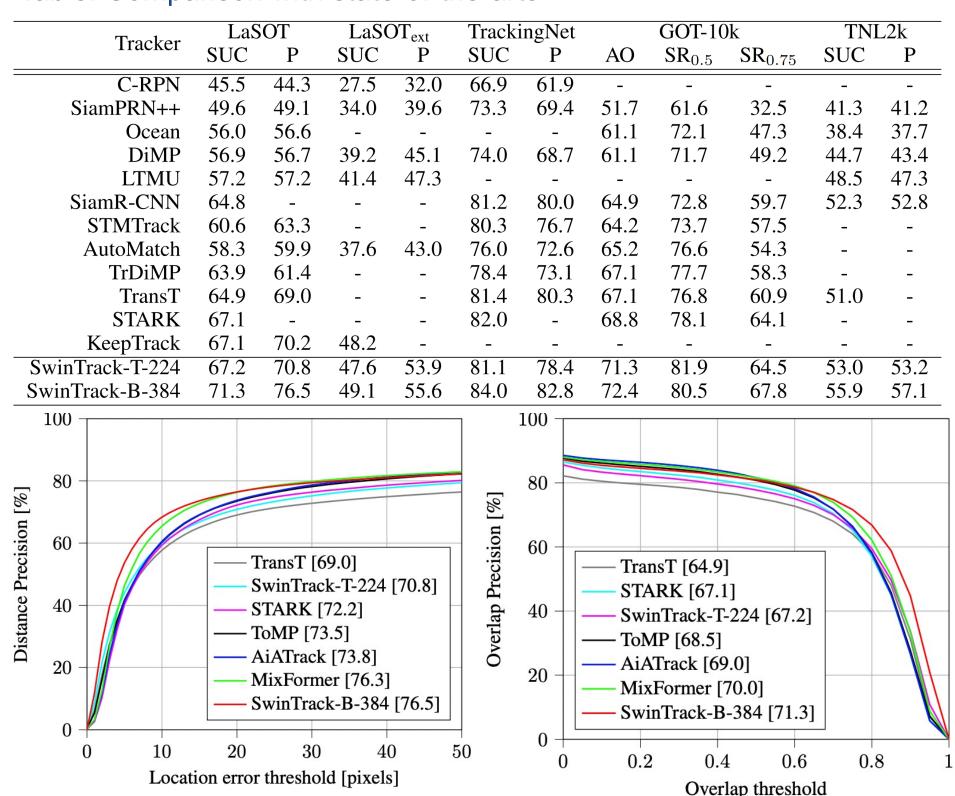


Figure: Comparison with latest Transformer-based trackers on LaSOT.

Table: Ablations with on SwinTrack-T-224 w/o motion token. 1: baseline; 2: replacing Transformer backbone w. ResNet-50; 3: replacing feature fusion w. cross attention-based fusion; 4: replacing decoder w. a target query-based; **5**: replacing united positional encoding w. absolute sine position encoding; 6: replacing IoU-aware classification loss w. plain binary cross entropy loss; 7: removing the Hanning penalty window in inference.

	LaSOT SUC (%)	LaSOT _{ext} SUC (%)	TrackingNet SUC (%)	GOT-10k mAO (%)	Speed fps	Params M
0	66.7	46.9	80.8	70.9	98	22.7
2	64.2	41.8	79.5	68.2	121	20.0
8	66.6	45.4	80.2	69.3	72	34.6
4	66.6	43.2	79.6	69.0	91	25.3
6	65.7	45.0	80.0	70.0	103	21.6
6	66.2	46.7	79.4	68.2	98	22.7
7	65.7	46.0	80.0	69.6	98	22.7

Figure: Visualization of tracking response maps of SwinTrack.

Key References

- 1. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, ICCV, 2021.
- 2. X. Chen, B. Yan, J. Zhu, D. Wang, X. Yang, H. Lu, Transformer tracking, CVPR, 2021. 3. A. Dosovitskiy, et al., An Image is worth 16x16 words: Transformers for image recognition at scale, ICLR, 2021.
- 4. A. Vaswani. et al., Attention Is all you need, NIPS, 2017.