Divert More Attention to Vision-Language Tracking

Mingzhe Guo^{1*} Zhipeng Zhang^{2*} Heng Fan³ Liping Jing¹

¹Beijing Jiaotong University ²DiDi Chuxing ³University of North Texas *Equal Contribution

Motivation

➢ Is Transformer the only path to SOTA? No. Vision-Language (VL) multimodal tracking with pure CNN architecture is another way, which requires less training data and training time.

>What is the bottleneck of VL tracking in achieving SOTA? It's in the VL representation. Existing VL trackers treat vision and language *independently* and processed *distantly* until the final result fusion. This results in in a lower upper-bound for VL tracking.

≻Our Solution?

Learning a novel unified-adaptive vision-language representation, aiming for SOTA VL tracking without using Transformer.

- *unified*, needs deep interactions of multimodal.

- adaptive, requires to accommodate different scenarios of visual and linguistic information.

Comparison of Trackers on LaSOT

Contributions

- We introduce a novel unified-adaptive vision-language representation for SOTA VL tracking.
- We propose the embarrassingly simple yet effective ModaMixer for unified VL representation learning.
- We present ASS to adapt mixed VL representation for better tracking.
- With pure CNN architecture, we achieve SOTA results on multiple benchmarks.

VL Multimodal Tracking Framework

- Adopting a hierarchical design to employ the ModaMixer.
- Arranging the proposed ModaMixer to different stages of the searched asymmetrical backbone to conduct multiple multimodal fusions.
- With the matching-based paradigm, both template and search backbone networks contain 4 stages, and the chosen NAS blocks of each stage are denoted with different colors.
- the asymmetry is revealed in not only the design of backbone networks, but also the ModaMixer.

ModaMixer with ASS

- Modality Mixer (ModaMixer) unifies multimodal information by considering language representation as selector to reweight channels of vision features.
- Asymmetrical Searching Strategy (ASS) learns an adaptive modeling structure for pairing with ModaMixer, which searches the optimal architects for different modalities.

Experiment

- Achieving considerable performance gains compared to the baselines, which also outperform current best VL tracker SNLT and some Transformer-based trackers.
- Transformer-based tracker could also be improved with the proposed ModaMixer and ASS.

Tuno	Mathad	LaSOT		LaSOT _{Ext}		TNL2K		GOT-10k			OTB99-L	
Type	wiethou	SUC	Р	SUC	Р	SUC	Р	AO	SR _{0.5}	SR _{0.75}	SUC	Р
	SiamRCNN [52]	64.8	68.4	-	-	52.3	52.8	64.9	72.8	59.7	70.0	89.4
	PrDiMP [13]	59.8	60.8	-	-	47.0	45.9	63.4	73.8	54.3	69.5	89.5
	AutoMatch [62]	58.3	59.9	37,6	43.0	47.2	43.5	65.2	76.6	54.3	71.6	93.2
	Ocean [64]	56.0	56.6	-	-	38.4	37.7	61.1	72.1	47.3	68.0	92.1
	KYS [6]	55.4	-	-	-	44.9	43.5	63.6	75.1	51.5	-	-
CNN-based	ATOM [12]	51.5	50.5	37.6	43.0	40.1	39.2	55.6	63.4	40.2	67.6	82.4
	SiamRPN++ [32]	49.6	49 .1	34.0	39.6	41.3	41.2	51.7	61.6	32.5	63.8	82.6
	C-RPN [18]	45.5	42.5	27.5	32.0	-	-	-	-	-	-	-
	SiamFC [5]	33.6	33.9	23.0	26.9	29.5	28.6	34.8	35.3	9.8	58.7	79.2
	ECO [11]	32.4	30.1	22.0	24.0	-	-	31.6	30.9	11.1	-	-
	SiamCAR [23]	50.7	51.0	33.9	41.0	35.3	38.4	56.9	67.0	41.5	68.8	89.1
	SNLT [20]	54.0	57.6	26.2	30.0	27.6	41.9	43.3	50.6	22.1	66.6	80.4
CNN-VL	VLT $_{\text{SCAR}}^{0}$ (Ours)	65.2	69.1	41.2	47.5	48.3	46.6	61.4	72.4	52.3	72.7	88.8
	VLT $_{\text{SCAR}}^{t}$ (Ours)	63.9	67.9	44.7	51.6	49.8	51.1	61.0	70.8	52.2	73.9	89.8
Trans-based	STARK [56]	66.4	71.2	47.8	55.1	-	-	68.0	77.7	62.3	69.6	91.4
	TrDiMP [54]	63.9	66.3	-	-	-	-	67.1	77.7	58.3	70.5	92.5
	TransT [8]	64.9	69.0	44.8	52.5	50.7	51.7	67.1	76.8	60.9	70.8	91.2
Trans-VL	VLT $^{0}_{TT}$ (Ours)	66.3	70.5	45.4	52.1	52.2	52.1	68.4	81.5	62.4	74.7	91.2
	VLT $_{TT}^{t}$ (Ours)	67.3	72.1	48.4	55.9	53.1	53.3	69.4	81.1	64.5	76.4	93.1

- Each component brings considerable improvement.
- VL multimodal fusion of ModaMixer is the key to SOTA.

#	Method	ModaMixer	ASS		LaSOT		TNL2K			
	Miciliou			SUC	$\mathbf{P}_{\mathrm{Norm}}$	Р	SUC	$\mathbf{P}_{\mathrm{Norm}}$	Р	
1	Baseline	-	-	50.7	60.0	51.0	35.3	43.6	38.4	
2	VLT_{SCAR}	\checkmark	-	57.6	65.8	61.1	41.5	49.2	43.2	
3	$VLT_{\rm SCAR}$	-	\checkmark	52.1	59.8	50.6	40.7	47.2	40.2	
4	VLT_{SCAR}	\checkmark	\checkmark	65.2	74.9	69.1	48.3	55.2	46.6	

- More specific description could help the tracker to distinguish the target from the background clutter.
- The mere description of the environment (the fourth column) may introduce interference instead.

Language description: "black bird standing on the ground ?

Without Language

"red racing car"

Origin Image

"car"

"moving along road"

Full Description